Weakly symmetric hexavalent graphs of order 9p

Song-Tao Guo

Henan University of Science and Technology

gsongtao@gmail.com

August 19 2019

<ロ> < 部 > < 書 > < 書 > 注) 名 () 1 / 14

- Definitions
- Motivation
- The arc-transitive case
- Classification for arc-transitive case
- The half-arc-transitive case
- Classification for half-arc-transitive case
- Examples

Definitions

Let X be a regular graph and Aut(X) the full automorphism group.

- vertex-transitive: Aut(X) is transitive on vertices.
- edge-transitive: Aut(X) is transitive on edges.
- arc-transitive: Aut(X) is transitive on arcs.
- half-arc-transitive: Aut(X) is transitive on vertices and edges but not on arcs.
- weakly symmetric: Aut(X) is transitive on vertices and edges.

- vertex-transitive: Aut(X) is transitive on vertices.
- edge-transitive: Aut(X) is transitive on edges.
- **arc-transitive**: Aut(X) is transitive on arcs.
- half-arc-transitive: Aut(X) is transitive on vertices and edges but not on arcs.
- weakly symmetric: Aut(X) is transitive on vertices and edges.

- vertex-transitive: Aut(X) is transitive on vertices.
- edge-transitive: Aut(X) is transitive on edges.
- arc-transitive: Aut(X) is transitive on arcs.
- half-arc-transitive: Aut(X) is transitive on vertices and edges but not on arcs.
- weakly symmetric: Aut(X) is transitive on vertices and edges.

- vertex-transitive: Aut(X) is transitive on vertices.
- edge-transitive: Aut(X) is transitive on edges.
- arc-transitive: Aut(X) is transitive on arcs.
- half-arc-transitive: Aut(X) is transitive on vertices and edges but not on arcs.
- weakly symmetric: Aut(X) is transitive on vertices and edges.

- vertex-transitive: Aut(X) is transitive on vertices.
- edge-transitive: Aut(X) is transitive on edges.
- arc-transitive: Aut(X) is transitive on arcs.
- half-arc-transitive: Aut(X) is transitive on vertices and edges but not on arcs.
- weakly symmetric: Aut(X) is transitive on vertices and edges.

- vertex-transitive: Aut(X) is transitive on vertices.
- edge-transitive: Aut(X) is transitive on edges.
- arc-transitive: Aut(X) is transitive on arcs.
- half-arc-transitive: Aut(X) is transitive on vertices and edges but not on arcs.
- weakly symmetric: Aut(X) is transitive on vertices and edges.

- |V(X)| = p: by Chao in 1971, X must be arc-transitive.
- |V(X)| = 2p: by Cheng and Oxley in 1987, X must be arc-transitive.
- |V(X)| = pq: by Alspach, Praeger, Wang and Xu in 1994, X can be arc-transitive or half-arc-transitive.
- |V(X)| = 2p²: by Zhou and Zhang in 2018, X must be arc-transitive.

- |V(X)| = p: by Chao in 1971, X must be arc-transitive.
- |V(X)| = 2p: by Cheng and Oxley in 1987, X must be arc-transitive.
- |V(X)| = pq: by Alspach, Praeger, Wang and Xu in 1994, X can be arc-transitive or half-arc-transitive.
- |V(X)| = 2p²: by Zhou and Zhang in 2018, X must be arc-transitive.

- |V(X)| = p: by Chao in 1971, X must be arc-transitive.
- |V(X)| = 2p: by Cheng and Oxley in 1987, X must be arc-transitive.
- |V(X)| = pq: by Alspach, Praeger, Wang and Xu in 1994, X can be arc-transitive or half-arc-transitive.
- |V(X)| = 2p²: by Zhou and Zhang in 2018, X must be arc-transitive.

- |V(X)| = p: by Chao in 1971, X must be arc-transitive.
- |V(X)| = 2p: by Cheng and Oxley in 1987, X must be arc-transitive.
- |V(X)| = pq: by Alspach, Praeger, Wang and Xu in 1994, X can be arc-transitive or half-arc-transitive.
- |V(X)| = 2p²: by Zhou and Zhang in 2018, X must be arc-transitive.

- Characterization and classification on highly arc-transitive graphs: Praeger, Li, Fang and Lu, et al.
- Such graphs with certain primitive action: Praeger, Li, Fang and Lu, et al.
- prime valency: by using the structure of vertex stabilizers, and covering and lifting technique, for example, Feng, Marušič and Zhou, et al.
- four valency: by Fang, Feng, Li, Lu and Zhou, et al.

- Characterization and classification on highly arc-transitive graphs: Praeger, Li, Fang and Lu, et al.
- Such graphs with certain primitive action: Praeger, Li, Fang and Lu, et al.
- prime valency: by using the structure of vertex stabilizers, and covering and lifting technique, for example, Feng, Marušič and Zhou, et al.
- four valency: by Fang, Feng, Li, Lu and Zhou, et al.

- Characterization and classification on highly arc-transitive graphs: Praeger, Li, Fang and Lu, et al.
- Such graphs with certain primitive action: Praeger, Li, Fang and Lu, et al.
- prime valency: by using the structure of vertex stabilizers, and covering and lifting technique, for example, Feng, Marušič and Zhou, et al.
- four valency: by Fang, Feng, Li, Lu and Zhou, et al.

- Characterization and classification on highly arc-transitive graphs: Praeger, Li, Fang and Lu, et al.
- Such graphs with certain primitive action: Praeger, Li, Fang and Lu, et al.
- prime valency: by using the structure of vertex stabilizers, and covering and lifting technique, for example, Feng, Marušič and Zhou, et al.
- four valency: by Fang, Feng, Li, Lu and Zhou, et al.

Motivation

- |V(X)| = p, 2p or $2p^2$: All are arc-transitive.
- |V(X)| = 4p: by Kutnar, Marušič, et al. All are metacirculants.
- |V(X)| = pq: by Alspach, Xu, Wang and Dobson. All are metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al.
- |V(X)| = p³: by Feng and Wang, an infinite family of non-metacirculants.
- *NH*-**number**: stands for non-half-arc-transitive, defined by Zhou in 2018.

- |V(X)| = p, 2p or $2p^2$: All are arc-transitive.
- |V(X)| = 4p: by Kutnar, Marušič, et al. All are metacirculants.
- |V(X)| = pq: by Alspach, Xu, Wang and Dobson. All are metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al.
- |V(X)| = p³: by Feng and Wang, an infinite family of non-metacirculants.
- *NH*-**number**: stands for non-half-arc-transitive, defined by Zhou in 2018.

- |V(X)| = p, 2p or $2p^2$: All are arc-transitive.
- |V(X)| = 4p: by Kutnar, Marušič, et al. All are metacirculants.
- |V(X)| = pq: by Alspach, Xu, Wang and Dobson. All are metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al.
- |V(X)| = p³: by Feng and Wang, an infinite family of non-metacirculants.
- *NH*-**number**: stands for non-half-arc-transitive, defined by Zhou in 2018.

- |V(X)| = p, 2p or $2p^2$: All are arc-transitive.
- |V(X)| = 4p: by Kutnar, Marušič, et al. All are metacirculants.
- |V(X)| = pq: by Alspach, Xu, Wang and Dobson. All are metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al.
- |V(X)| = p³: by Feng and Wang, an infinite family of non-metacirculants.
- *NH*-**number**: stands for non-half-arc-transitive, defined by Zhou in 2018.

- |V(X)| = p, 2p or $2p^2$: All are arc-transitive.
- |V(X)| = 4p: by Kutnar, Marušič, et al. All are metacirculants.
- |V(X)| = pq: by Alspach, Xu, Wang and Dobson. All are metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al.
- |V(X)| = p³: by Feng and Wang, an infinite family of non-metacirculants.
- *NH*-**number**: stands for non-half-arc-transitive, defined by Zhou in 2018.

- |V(X)| = p, 2p or $2p^2$: All are arc-transitive.
- |V(X)| = 4p: by Kutnar, Marušič, et al. All are metacirculants.
- |V(X)| = pq: by Alspach, Xu, Wang and Dobson. All are metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al.
- |V(X)| = p³: by Feng and Wang, an infinite family of non-metacirculants.
- *NH*-number: stands for non-half-arc-transitive, defined by Zhou in 2018.

Theorem 1.1, DM, 2017

Let p be a prime. Then any connected hexavalent arc-transitive graph of order 9p is isomorphic to one of the following graphs.

p	<i>s</i> -transitive	$\operatorname{Aut}(X)$	Num.
2	1-transitive	$(S_3 imes \mathbb{Z}_3).D_{12}$	1
3	1-transitive	$\operatorname{Aut}(X)_{\nu} = D_{12}, \operatorname{S}_4 \times \mathbb{Z}_2, D_8 \times \operatorname{S}_3$	4
5	1-transitive	$\mathbb{Z}_3.\mathrm{S}_6$	1
7	1-transitive	G ₂ (2)	2
р	1-transitive	$S_3 \operatorname{wr} D_{6p}$	1
<i>p</i> ≥3	1-transitive	$S_3 \operatorname{wr} D_{2p}$	1
<i>p</i> ≡1(mod 6)	1-regular	$\mathbb{Z}_{9p} \rtimes \mathbb{Z}_{6}$	3
$p\equiv 1 \pmod{6}$	1-regular	$(\mathbb{Z}_3^2 \times \mathbb{Z}_p) \rtimes \mathbb{Z}_6$	1

Let X be such graph, A = Aut(X) and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order 9*p*.
- X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_{3-} and K_{4-} simple groups.

• N has two cases: $N_v \neq 1$ or $N_v = 1$.

For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or C(3, p, 2).

Let X be such graph, A = Aut(X) and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order 9*p*.
- X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_{3-} and K_{4-} simple groups.

• *N* has two cases: $N_v \neq 1$ or $N_v = 1$.

For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or C(3, p, 2).

Classification for arc-transitive case

Ideas of proof

Let X be such graph, A = Aut(X) and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order 90
- X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_{3-} and K_{4-} simple groups.

• N has two cases: $N_v \neq 1$ or $N_v = 1$.

For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or C(3, p, 2).

Let X be such graph, A = Aut(X) and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group.
 By using the automorphisms of non-abelian group of order 9p.
- X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_3 - and K_4 -simple groups.

• N has two cases: $N_v \neq 1$ or $N_v = 1$.

For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or C(3, p, 2).

Let X be such graph, A = Aut(X) and N a minimal normal subgroup of A.

X cannot be a normal Cayley graph on a non-abelian group.
 By using the automorphisms of non-abelian group of order 9p.

• X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_3 - and K_4 -simple groups.

• N has two cases: $N_v \neq 1$ or $N_v = 1$.

For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or C(3, p, 2).

Let X be such graph, A = Aut(X) and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group.
 By using the automorphisms of non-abelian group of order 9p.
- X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_{3-} and K_{4} -simple groups.

• N has two cases: $N_{\nu} \neq 1$ or $N_{\nu} = 1$.

For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or C(3, p, 2).

Let X be such graph, A = Aut(X) and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group.
 By using the automorphisms of non-abelian group of order 9p.
- X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_{3-} and K_{4} -simple groups.

• N has two cases: $N_{\nu} \neq 1$ or $N_{\nu} = 1$.

For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or C(3, p, 2).

Let X be such graph, A = Aut(X) and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group.
 By using the automorphisms of non-abelian group of order 9p.
- X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_{3-} and K_{4} -simple groups.

• N has two cases: $N_v \neq 1$ or $N_v = 1$. For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or C(3, p, 2).

Let X be such graph, A = Aut(X) and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group.
 By using the automorphisms of non-abelian group of order 9p.
- X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_{3-} and K_{4} -simple groups.

• *N* has two cases: $N_v \neq 1$ or $N_v = 1$.

For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or C(3, p, 2).

Theorem 1.1, DM, 2019

Let p be a prime and X a connected hexavalent half-arc-transitive graph of order 9p. Then X, the automorphism group Aut(X) and the vertex stabilizer $Aut(X)_v$ for a vertex $v \in V(X)$ are described in the following table:

p	$\operatorname{Aut}(X)$	$\operatorname{Aut}(X)_{v}$	Numeration
9 $(p-1)$	$\mathbb{Z}_{3p} \rtimes \mathbb{Z}_9$	\mathbb{Z}_3	1
27 (p-1)	$\mathbb{Z}_p \rtimes \mathbb{Z}_{27}$	\mathbb{Z}_3	3

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a {2,3}-group and K₃-simple group.
- Every normal abelian 3-subgroup *M* of *A* is isomorphic to Z₃.
 By using quotient graphs relative to the orbits of *M*. If M ≇ Z₃, then X is arc-transitive.
- A ≅ Z₃ × (Z_p × Z₉) with 9 | (p − 1) or Z_p × Z₂₇ with 27 | (p − 1). By using the edge-transitive graphs of order 3p or 9.
- Classification.

Constructing coset graph by the full automorphism group A. By using the GI-property and calculating the orbits of A acting on the corresponding right cosets.

• Every minimal normal subgroup of A is solvable.

By using that A_v is a $\{2,3\}$ -group and K_3 -simple group.

- Every normal abelian 3-subgroup *M* of *A* is isomorphic to Z₃.
 By using quotient graphs relative to the orbits of *M*. If M ≇ Z₃, then X is arc-transitive.
- A ≅ Z₃ × (Z_p × Z₉) with 9 | (p − 1) or Z_p × Z₂₇ with 27 | (p − 1). By using the edge-transitive graphs of order 3p or 9.
- Classification.

Constructing coset graph by the full automorphism group A. By using the GI-property and calculating the orbits of A acting on the corresponding right cosets.

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a {2,3}-group and K₃-simple group.
- Every normal abelian 3-subgroup *M* of *A* is isomorphic to Z₃.
 By using quotient graphs relative to the orbits of *M*. If M ≇ Z₃, then X is arc-transitive.
- A ≅ Z₃ × (Z_p × Z₉) with 9 | (p − 1) or Z_p × Z₂₇ with 27 | (p − 1). By using the edge-transitive graphs of order 3p or 9.
- Classification.

Constructing coset graph by the full automorphism group A. By using the GI-property and calculating the orbits of A acting on the corresponding right cosets.

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a {2,3}-group and K₃-simple group.
- Every normal abelian 3-subgroup *M* of *A* is isomorphic to Z₃.
 By using quotient graphs relative to the orbits of *M*. If *M* ≇ Z₃ then *X* is arc-transitive.
- A ≅ Z₃ × (Z_p ⋊ Z₉) with 9 | (p − 1) or Z_p ⋊ Z₂₇ with 27 | (p − 1). By using the edge-transitive graphs of order 3p or 9.
- Classification.

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a {2,3}-group and K₃-simple group.
- Every normal abelian 3-subgroup *M* of *A* is isomorphic to Z₃.
 By using quotient graphs relative to the orbits of *M*. If M ≇ Z₃, then X is arc-transitive.
- A ≅ Z₃ × (Z_p ⋊ Z₉) with 9 | (p − 1) or Z_p ⋊ Z₂₇ with 27 | (p − 1). By using the edge-transitive graphs of order 3p or 9.
- Classification.

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a {2,3}-group and K₃-simple group.
- Every normal abelian 3-subgroup *M* of *A* is isomorphic to Z₃.
 By using quotient graphs relative to the orbits of *M*. If M ≇ Z₃, then X is arc-transitive.
- A ≃ Z₃ × (Z_p ⋊ Z₉) with 9 | (p − 1) or Z_p ⋊ Z₂₇ with 27 | (p − 1). By using the edge-transitive graphs of order 3p or 9.
- Classification.

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a {2,3}-group and K₃-simple group.
- Every normal abelian 3-subgroup *M* of *A* is isomorphic to Z₃.
 By using quotient graphs relative to the orbits of *M*. If M ≇ Z₃, then X is arc-transitive.
- A ≃ Z₃ × (Z_p ⋊ Z₉) with 9 | (p − 1) or Z_p ⋊ Z₂₇ with 27 | (p − 1). By using the edge-transitive graphs of order 3p or 9.
- Classification.

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a {2,3}-group and K₃-simple group.
- Every normal abelian 3-subgroup *M* of *A* is isomorphic to Z₃.
 By using quotient graphs relative to the orbits of *M*. If M ≇ Z₃, then X is arc-transitive.
- A ≃ Z₃ × (Z_p ⋊ Z₉) with 9 | (p − 1) or Z_p ⋊ Z₂₇ with 27 | (p − 1). By using the edge-transitive graphs of order 3p or 9.

• Classification.

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a {2,3}-group and K₃-simple group.
- Every normal abelian 3-subgroup *M* of *A* is isomorphic to Z₃.
 By using quotient graphs relative to the orbits of *M*. If M ≇ Z₃, then X is arc-transitive.
- A ≃ Z₃ × (Z_p ⋊ Z₉) with 9 | (p − 1) or Z_p ⋊ Z₂₇ with 27 | (p − 1). By using the edge-transitive graphs of order 3p or 9.
- Classification.

Example (Definition 2.1, Praeger and Xu, European J. Combin., 1989)

Let $p \ge 3$. Then define the graph C(3, p, 2) = (V, E) as follows:

$$V(X) = \mathbb{Z}_p \times \mathbb{Z}_3^2, \quad E = \{\{(i, x, y), (i+1, y, z)\}\}$$

where \mathbb{Z}_p and \mathbb{Z}_3 are additive groups of order p and 3, $i \in \mathbb{Z}_p$ and $x, y, z \in \mathbb{Z}_3$. Then C(3, p, 2) is a connected hexavalent symmetric graphs of order 9p and $Aut(C(3, p, 2)) = S_3 wr D_{2p}$.

Remark. It is easy to check that $C(3, 3p, 1) \cong C_{3p}[3K_1]$. Clearly, C(3, p, 2) is not isomorphic to $C_{3p}[3K_1]$ because

 $\operatorname{Aut}(C(3,p,2)) \neq \operatorname{Aut}(C_{3p}[3K_1]).$

Aut(C(3, p, 2)) has a minimal normal subgroup isomorphic to \mathbb{Z}_3^p , which is not semiregular on V(C(3, p, 2)).

Example (Definition 2.1, Praeger and Xu, European J. Combin., 1989)

Let $p \ge 3$. Then define the graph C(3, p, 2) = (V, E) as follows:

$$V(X) = \mathbb{Z}_p \times \mathbb{Z}_3^2, \quad E = \{\{(i, x, y), (i+1, y, z)\}\}$$

where \mathbb{Z}_p and \mathbb{Z}_3 are additive groups of order p and 3, $i \in \mathbb{Z}_p$ and $x, y, z \in \mathbb{Z}_3$. Then C(3, p, 2) is a connected hexavalent symmetric graphs of order 9p and $Aut(C(3, p, 2)) = S_3 wr D_{2p}$.

Remark. It is easy to check that $C(3, 3p, 1) \cong C_{3p}[3K_1]$. Clearly, C(3, p, 2) is not isomorphic to $C_{3p}[3K_1]$ because

 $\operatorname{Aut}(C(3, p, 2)) \neq \operatorname{Aut}(C_{3p}[3K_1]).$

Aut(C(3, p, 2)) has a minimal normal subgroup isomorphic to \mathbb{Z}_3^p , which is not semiregular on V(C(3, p, 2)).

Let *p* be a prime and *r* an element of order 9 in \mathbb{Z}_p^* . Then $9 \mid (p-1)$. Suppose that $G(3p \rtimes 9) = \langle a, b, c \mid a^p = b^9 = c^3 = [a, c] = [b, c] = 1, b^{-1}ab = a^r \rangle \cong \mathbb{Z}_3 \times (\mathbb{Z}_p \rtimes \mathbb{Z}_9)$ with $r \neq 1$.

Construction 4.3, DM, 2019

Take $H = \langle b^3 c \rangle \leq G(3p \rtimes 9)$ and g = ab. Then $H \cong \mathbb{Z}_3$. Define the following coset graph:

$$\mathcal{HC}_{3p
times9}(9p)=\mathrm{Cos}(G(3p
times9),H,H\{g,g^{-1}\}H).$$

The coset graph $\mathcal{HC}_{3p\times9}(9p)$ is a connected hexavalent half-arc-transitive graph of order 9p, and

 $\operatorname{Aut}(\mathcal{HC}_{3p\rtimes 9}(9p))\cong G(3p\rtimes 9).$

Let *p* be a prime and *r* an element of order 9 in \mathbb{Z}_p^* . Then $9 \mid (p-1)$. Suppose that $G(3p \rtimes 9) = \langle a, b, c \mid a^p = b^9 = c^3 = [a, c] = [b, c] = 1, b^{-1}ab = a^r \rangle \cong \mathbb{Z}_3 \times (\mathbb{Z}_p \rtimes \mathbb{Z}_9)$ with $r \neq 1$.

Construction 4.3, DM, 2019

Take $H = \langle b^3 c \rangle \leq G(3p \rtimes 9)$ and g = ab. Then $H \cong \mathbb{Z}_3$. Define the following coset graph:

$$\mathcal{HC}_{3p\rtimes9}(9p) = \operatorname{Cos}(G(3p\rtimes9), H, H\{g, g^{-1}\}H)$$

The coset graph $\mathcal{HC}_{3p \times 9}(9p)$ is a connected hexavalent half-arc-transitive graph of order 9p, and

 $\operatorname{Aut}(\mathcal{HC}_{3p\rtimes 9}(9p))\cong G(3p\rtimes 9).$

Let *p* be a prime and *s* an element of order 27 in \mathbb{Z}_p^* . Then 27 |(p-1). Suppose that $G(p \rtimes 27) = \langle x, y | x^p = y^{27} = 1, y^{-1}xy = x^s \rangle \cong \mathbb{Z}_p \rtimes \mathbb{Z}_{27}$ with $s \neq 1$.

Construction 4.5, DM, 2019

Take $K = \langle y^9 \rangle \leq G(p \rtimes 27)$. Then $K \cong \mathbb{Z}_3$. Set $g_1 = xy$, $g_2 = xy^2$, $g_3 = xy^4$. Define the following coset graphs: $\mathcal{H}_{C_{n-1}}^{\mathcal{H}}(p, 1) = Cos(G(p \rtimes 27) | K | K) | g_n = g^{-1} | K)$:

 $HC_{p \times 27}(9p, 1) = Cos(G(p \times 27), K, K\{g_1, g_1^{-1}\}K);$

$$\mathcal{HC}_{p\rtimes 27}(9p,2)=\operatorname{Cos}(G(p\rtimes 27),K,K\{g_2,g_2^{-1}\}K);$$

 $\mathcal{HC}_{p\times 27}(9p,3)=\operatorname{Cos}(G(p\rtimes 27),K,K\{g_3,g_3^{-1}\}K).$

The coset graphs $\mathcal{HC}_{p \rtimes 27}(9p, i)$ are connected hexavalent half-arc-transitive graphs of order 9p, and for i = 1, 2, 3Aut $(\mathcal{HC}_{p \rtimes 27}(9p, i)) \cong G(p \rtimes 27)$. Let *p* be a prime and *s* an element of order 27 in \mathbb{Z}_p^* . Then 27 |(p-1). Suppose that $G(p \rtimes 27) = \langle x, y | x^p = y^{27} = 1, y^{-1}xy = x^s \rangle \cong \mathbb{Z}_p \rtimes \mathbb{Z}_{27}$ with $s \neq 1$.

Construction 4.5, DM, 2019

Take $K = \langle y^9 \rangle \leq G(p \rtimes 27)$. Then $K \cong \mathbb{Z}_3$. Set $g_1 = xy$, $g_2 = xy^2$, $g_3 = xy^4$. Define the following coset graphs: $\mathcal{HC}_{p \rtimes 27}(9p, 1) = \operatorname{Cos}(G(p \rtimes 27), K, K\{g_1, g_1^{-1}\}K);$ $\mathcal{HC}_{p \rtimes 27}(9p, 2) = \operatorname{Cos}(G(p \rtimes 27), K, K\{g_2, g_2^{-1}\}K);$ $\mathcal{HC}_{p \rtimes 27}(9p, 3) = \operatorname{Cos}(G(p \rtimes 27), K, K\{g_3, g_3^{-1}\}K).$ The coset graphs $\mathcal{HC}_{p \rtimes 27}(9p, i)$ are connected hexavalent half-arc-transitive graphs of order 9p, and for i = 1, 2, 3 $\operatorname{Aut}(\mathcal{HC}_{p \rtimes 27}(9p, i)) \cong G(p \rtimes 27).$

Thank you!