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Definitions

Let X be a regular graph and Aut(X ) the full automorphism group.

Different types of transitivity

vertex-transitive: Aut(X ) is transitive on vertices.

edge-transitive: Aut(X ) is transitive on edges.

arc-transitive: Aut(X ) is transitive on arcs.

half-arc-transitive: Aut(X ) is transitive on vertices and
edges but not on arcs.

weakly symmetric: Aut(X ) is transitive on vertices and
edges.
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Motivation

Weakly symmetric graphs

Let X be a weakly symmetric graph, and p, q two distinct primes.

|V (X )| = p: by Chao in 1971, X must be arc-transitive.

|V (X )| = 2p: by Cheng and Oxley in 1987, X must be
arc-transitive.

|V (X )| = pq: by Alspach, Praeger, Wang and Xu in 1994, X
can be arc-transitive or half-arc-transitive.

|V (X )| = 2p2: by Zhou and Zhang in 2018, X must be
arc-transitive.
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Motivation

Arc-transitive graphs

Characterization and classification on highly
arc-transitive graphs: Praeger, Li, Fang and Lu, et al.

Such graphs with certain primitive action: Praeger, Li,
Fang and Lu, et al.

prime valency: by using the structure of vertex stabilizers,
and covering and lifting technique, for example, Feng, Marušič
and Zhou, et al.

four valency: by Fang, Feng, Li, Lu and Zhou, et al.
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and Zhou, et al.

four valency: by Fang, Feng, Li, Lu and Zhou, et al.

5 / 14



Motivation

Half-arc-transitive graphs

|V (X )| = p, 2p or 2p2: All are arc-transitive.

|V (X )| = 4p: by Kutnar, Marušič, et al. All are
metacirculants.

|V (X )| = pq: by Alspach, Xu, Wang and Dobson. All are
metacirculants.

Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al.

|V (X )| = p3: by Feng and Wang, an infinite family of
non-metacirculants.

NH-number: stands for non-half-arc-transitive, defined by
Zhou in 2018.
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|V (X )| = p3: by Feng and Wang, an infinite family of
non-metacirculants.

NH-number: stands for non-half-arc-transitive, defined by
Zhou in 2018.

6 / 14



The arc-transitive case

Theorem 1.1, DM, 2017

Let p be a prime. Then any connected hexavalent arc-transitive
graph of order 9p is isomorphic to one of the following graphs.

p s-transitive Aut(X ) Num.
2 1-transitive (S3 × Z3).D12 1
3 1-transitive Aut(X )v=D12, S4×Z2, D8×S3 4
5 1-transitive Z3.S6 1
7 1-transitive G2(2) 2
p 1-transitive S3 wrD6p 1
p≥3 1-transitive S3 wrD2p 1
p≡1(mod 6) 1-regular Z9p o Z6 3
p≡1(mod 6) 1-regular (Z2

3 × Zp) o Z6 1

7 / 14



Classification for arc-transitive case

Ideas of proof
Let X be such graph, A = Aut(X ) and N a minimal normal subgroup of
A.

X cannot be a normal Cayley graph on a non-abelian group.

By using the automorphisms of non-abelian group of order 9p.

X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive
hexavalent graphs, quotient graphs relative to the orbits of a
minimal normal subgroup of A, and the K3- and K4-simple groups.

N has two cases: Nv 6= 1 or Nv = 1.

For Nv 6= 1, X ∼= C3p[3K1] or C (3, p, 2).

For Nv = 1, X is isomorphic to a normal Cayley graph on an abelian
group of order 9p or some sporadic graphs.

8 / 14
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The half-arc-transitive case

Theorem 1.1, DM, 2019

Let p be a prime and X a connected hexavalent half-arc-transitive graph
of order 9p. Then X , the automorphism group Aut(X ) and the vertex
stabilizer Aut(X )v for a vertex v ∈ V (X ) are described in the following
table:

p Aut(X ) Aut(X )v Numeration

9
∣∣ (p − 1) Z3p o Z9 Z3 1

27
∣∣ (p − 1) Zp o Z27 Z3 3

9 / 14



Classification for half-arc-transitive case

Ideas of proof

Every minimal normal subgroup of A is solvable.

By using that Av is a {2, 3}-group and K3-simple group.

Every normal abelian 3-subgroup M of A is isomorphic to Z3.

By using quotient graphs relative to the orbits of M. If M 6∼= Z3,
then X is arc-transitive.

A ∼= Z3 × (Zp o Z9) with 9
∣∣ (p − 1) or Zp o Z27 with 27

∣∣ (p − 1).

By using the edge-transitive graphs of order 3p or 9.

Classification.

Constructing coset graph by the full automorphism group A. By
using the GI -property and calculating the orbits of A acting on the
corresponding right cosets.
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Examples: arc-transitive case

Example (Definition 2.1, Praeger and Xu, European J. Combin., 1989)

Let p ≥ 3. Then define the graph C (3, p, 2) = (V ,E ) as follows:

V (X ) = Zp × Z2
3, E = {{(i , x , y), (i + 1, y , z)}}

where Zp and Z3 are additive groups of order p and 3, i ∈ Zp and
x , y , z ∈ Z3. Then C (3, p, 2) is a connected hexavalent symmetric graphs
of order 9p and Aut(C (3, p, 2)) = S3 wrD2p.

Remark. It is easy to check that C (3, 3p, 1) ∼= C3p[3K1]. Clearly,
C (3, p, 2) is not isomorphic to C3p[3K1] because

Aut(C (3, p, 2)) 6= Aut(C3p[3K1]).

Aut(C (3, p, 2)) has a minimal normal subgroup isomorphic to Zp
3 , which

is not semiregular on V (C (3, p, 2)).

11 / 14
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Examples: half-arc-transitive case

Let p be a prime and r an element of order 9 in Z∗
p. Then 9

∣∣ (p − 1).

Suppose that G (3po9) = 〈a, b, c | ap = b9 = c3 = [a, c] = [b, c] =
1, b−1ab = ar 〉 ∼= Z3 × (Zp o Z9) with r 6= 1.

Construction 4.3, DM, 2019

Take H = 〈b3c〉 ≤ G (3po9) and g = ab. Then H ∼= Z3. Define the
following coset graph:

HC3po9(9p) = Cos(G (3po9),H,H{g , g−1}H).

The coset graph HC3po9(9p) is a connected hexavalent half-arc-transitive
graph of order 9p, and

Aut(HC3po9(9p)) ∼= G (3po9).
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Examples: half-arc-transitive case

Let p be a prime and s an element of order 27 in Z∗
p. Then 27

∣∣ (p − 1).

Suppose that G (po27) = 〈x , y | xp = y27 = 1, y−1xy = x s〉 ∼= Zp o Z27

with s 6= 1.

Construction 4.5, DM, 2019

Take K = 〈y9〉 ≤ G (po27). Then K ∼= Z3. Set g1 = xy , g2 = xy2,
g3 = xy4. Define the following coset graphs:

HCpo27(9p, 1) = Cos(G (po27),K ,K{g1, g−1
1 }K );

HCpo27(9p, 2) = Cos(G (po27),K ,K{g2, g−1
2 }K );

HCpo27(9p, 3) = Cos(G (po27),K ,K{g3, g−1
3 }K ).

The coset graphs HCpo27(9p, i) are connected hexavalent
half-arc-transitive graphs of order 9p, and for i = 1, 2, 3

Aut(HCpo27(9p, i)) ∼= G (po27).

13 / 14



Examples: half-arc-transitive case

Let p be a prime and s an element of order 27 in Z∗
p. Then 27

∣∣ (p − 1).

Suppose that G (po27) = 〈x , y | xp = y27 = 1, y−1xy = x s〉 ∼= Zp o Z27

with s 6= 1.

Construction 4.5, DM, 2019

Take K = 〈y9〉 ≤ G (po27). Then K ∼= Z3. Set g1 = xy , g2 = xy2,
g3 = xy4. Define the following coset graphs:

HCpo27(9p, 1) = Cos(G (po27),K ,K{g1, g−1
1 }K );

HCpo27(9p, 2) = Cos(G (po27),K ,K{g2, g−1
2 }K );

HCpo27(9p, 3) = Cos(G (po27),K ,K{g3, g−1
3 }K ).

The coset graphs HCpo27(9p, i) are connected hexavalent
half-arc-transitive graphs of order 9p, and for i = 1, 2, 3

Aut(HCpo27(9p, i)) ∼= G (po27).

13 / 14



Thank you!
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