Weakly symmetric hexavalent graphs of order $9 p$

Song-Tao Guo
Henan University of Science and Technology
gsongtao@gmail.com

August 192019

Outline

- Definitions
- Motivation
- The arc-transitive case
- Classification for arc-transitive case
- The half-arc-transitive case
- Classification for half-arc-transitive case
- Examples

Definitions

Let X be a regular graph and $\operatorname{Aut}(X)$ the full automorphism group.
Different types of transitivity

- vertex-transitive: $\operatorname{Aut}(X)$ is transitive on vertices

Definitions

Let X be a regular graph and $\operatorname{Aut}(X)$ the full automorphism group.
Different types of transitivity

- vertex-transitive: $\operatorname{Aut}(X)$ is transitive on vertices.
- edge-transitive: $\operatorname{Aut}(X)$ is transitive on edges.
- arc-transitive: $\operatorname{Aut}(X)$ is transitive on arcs

Definitions

Let X be a regular graph and $\operatorname{Aut}(X)$ the full automorphism group.
Different types of transitivity

- vertex-transitive: $\operatorname{Aut}(X)$ is transitive on vertices.
- edge-transitive: $\operatorname{Aut}(X)$ is transitive on edges.
- arc-transitive: $\operatorname{Aut}(X)$ is transitive on arcs
- half-arc-transitive: $\operatorname{Aut}(X)$ is transitive on vertices and
edges hut not on arcs.

Definitions

Let X be a regular graph and $\operatorname{Aut}(X)$ the full automorphism group.
Different types of transitivity

- vertex-transitive: $\operatorname{Aut}(X)$ is transitive on vertices.
- edge-transitive: $\operatorname{Aut}(X)$ is transitive on edges.
- arc-transitive: $\operatorname{Aut}(X)$ is transitive on arcs.
- half-arc-transitive: $\operatorname{Aut}(X)$ is transitive on vertices and
edges but not on arcs.
- weakly symmetric: Aut (X) is transitive on vertices and

Definitions

Let X be a regular graph and $\operatorname{Aut}(X)$ the full automorphism group.
Different types of transitivity

- vertex-transitive: $\operatorname{Aut}(X)$ is transitive on vertices.
- edge-transitive: $\operatorname{Aut}(X)$ is transitive on edges.
- arc-transitive: $\operatorname{Aut}(X)$ is transitive on arcs.
- half-arc-transitive: $\operatorname{Aut}(X)$ is transitive on vertices and edges but not on arcs.
edges.

Definitions

Let X be a regular graph and $\operatorname{Aut}(X)$ the full automorphism group.
Different types of transitivity

- vertex-transitive: $\operatorname{Aut}(X)$ is transitive on vertices.
- edge-transitive: $\operatorname{Aut}(X)$ is transitive on edges.
- arc-transitive: $\operatorname{Aut}(X)$ is transitive on arcs.
- half-arc-transitive: $\operatorname{Aut}(X)$ is transitive on vertices and edges but not on arcs.
- weakly symmetric: $\operatorname{Aut}(X)$ is transitive on vertices and edges.

Motivation

Weakly symmetric graphs
Let X be a weakly symmetric graph, and p, q two distinct primes.

- $|V(X)|=p$: by Chao in 1971, X must be arc-transitive. arc-transitive.

Motivation

Weakly symmetric graphs
Let X be a weakly symmetric graph, and p, q two distinct primes.

- $|V(X)|=p$: by Chao in 1971, X must be arc-transitive.
- $|V(X)|=2 p$: by Cheng and Oxley in 1987, X must be arc-transitive.
can be arc-transitive or half-arc-transitive. arc-transitive.

Motivation

Weakly symmetric graphs
Let X be a weakly symmetric graph, and p, q two distinct primes.

- $|V(X)|=p$: by Chao in 1971, X must be arc-transitive.
- $|V(X)|=2 p$: by Cheng and Oxley in 1987, X must be arc-transitive.
- $|V(X)|=p q$: by Alspach, Praeger, Wang and $X u$ in 1994, X can be arc-transitive or half-arc-transitive.
arc-transitive.

Motivation

Weakly symmetric graphs
Let X be a weakly symmetric graph, and p, q two distinct primes.

- $|V(X)|=p$: by Chao in 1971, X must be arc-transitive.
- $|V(X)|=2 p$: by Cheng and Oxley in 1987, X must be arc-transitive.
- $|V(X)|=p q$: by Alspach, Praeger, Wang and $X u$ in 1994, X can be arc-transitive or half-arc-transitive.
- $|V(X)|=2 p^{2}$: by Zhou and Zhang in 2018, X must be arc-transitive.

Motivation

Arc-transitive graphs

- Characterization and classification on highly arc-transitive graphs: Praeger, Li, Fang and Lu, et al.

Such graphs with certain primitive action: Praeger, Li, Fang and Lu, et al. prime valency: by using the structure of vertex stabilizers, and covering and lifting technioue for examnle Feng Marušic and Zhou, et al

Motivation

Arc-transitive graphs

- Characterization and classification on highly arc-transitive graphs: Praeger, Li, Fang and Lu, et al.
- Such graphs with certain primitive action: Praeger, Li, Fang and Lu, et al.
- four valency: by Fang, Feng, Li, Lu and Zhou, et al.

Motivation

Arc-transitive graphs

- Characterization and classification on highly arc-transitive graphs: Praeger, Li, Fang and Lu, et al.
- Such graphs with certain primitive action: Praeger, Li, Fang and Lu, et al.
- prime valency: by using the structure of vertex stabilizers, and covering and lifting technique, for example, Feng, Marušič and Zhou, et al.
- four valency: by Fang, Feng, Li, Lu and Zhou, et al.

Motivation

Arc-transitive graphs

- Characterization and classification on highly arc-transitive graphs: Praeger, Li, Fang and Lu, et al.
- Such graphs with certain primitive action: Praeger, Li, Fang and Lu, et al.
- prime valency: by using the structure of vertex stabilizers, and covering and lifting technique, for example, Feng, Marušič and Zhou, et al.
- four valency: by Fang, Feng, Li, Lu and Zhou, et al.

Motivation

Half-arc-transitive graphs

- $|V(X)|=p, 2 p$ or $2 p^{2}$: All are arc-transitive.

metacirculants.

metacirculants.

Motivation

Half-arc-transitive graphs

- $|V(X)|=p, 2 p$ or $2 p^{2}$: All are arc-transitive.
- $|V(X)|=4 p$: by Kutnar, Marušič, et al. All are metacirculants.
metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al

Motivation

Half-arc-transitive graphs

- $|V(X)|=p, 2 p$ or $2 p^{2}$: All are arc-transitive.
- $|V(X)|=4 p$: by Kutnar, Marušič, et al. All are metacirculants.
- $|V(X)|=p q$: by Alspach, Xu, Wang and Dobson. All are metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al by Feng and Wang, an infinite family of non-metacirculants.

Motivation

Half-arc-transitive graphs

- $|V(X)|=p, 2 p$ or $2 p^{2}$: All are arc-transitive.
- $|V(X)|=4 p$: by Kutnar, Marušič, et al. All are metacirculants.
- $|V(X)|=p q$: by Alspach, Xu , Wang and Dobson. All are metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al. by Feng and Wang, an infinite family of non-metacirculants.
stands for non-half-arc-transitive, defined by
Zhou in 2018

Motivation

Half-arc-transitive graphs

- $|V(X)|=p, 2 p$ or $2 p^{2}$: All are arc-transitive.
- $|V(X)|=4 p$: by Kutnar, Marušič, et al. All are metacirculants.
- $|V(X)|=p q$: by Alspach, Xu, Wang and Dobson. All are metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al.
- $|V(X)|=p^{3}$: by Feng and Wang, an infinite family of non-metacirculants.

Zhou in 2018.

Motivation

Half-arc-transitive graphs

- $|V(X)|=p, 2 p$ or $2 p^{2}$: All are arc-transitive.
- $|V(X)|=4 p$: by Kutnar, Marušič, et al. All are metacirculants.
- $|V(X)|=p q$: by Alspach, Xu, Wang and Dobson. All are metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al.
- $|V(X)|=p^{3}$: by Feng and Wang, an infinite family of non-metacirculants.
- $\mathcal{N H}$-number: stands for non-half-arc-transitive, defined by Zhou in 2018.

Theorem 1.1, DM, 2017

Let p be a prime. Then any connected hexavalent arc-transitive graph of order $9 p$ is isomorphic to one of the following graphs.

p	s-transitive	$\operatorname{Aut}(X)$	Num.
2	1 -transitive	$\left(\mathrm{S}_{3} \times \mathbb{Z}_{3}\right) \cdot D_{12}$	1
3	1-transitive	$\operatorname{Aut}(X)_{v}=D_{12}, \mathrm{~S}_{4} \times \mathbb{Z}_{2}, D_{8} \times \mathrm{S}_{3}$	4
5	1-transitive	$\mathbb{Z}_{3} \cdot \mathrm{~S}_{6}$	1
7	1-transitive	$G_{2}(2)$	2
p	1-transitive	$\mathrm{S}_{3} \operatorname{wr} D_{6 p}$	1
$p \geq 3$	1-transitive	$\mathrm{S}_{3} \mathrm{wr} D_{2 p}$	1
$p \equiv 1(\bmod 6)$	1 -regular	$\mathbb{Z}_{9 p} \rtimes \mathbb{Z}_{6}$	3
$p \equiv 1(\bmod 6)$	1-regular	$\left(\mathbb{Z}_{3}^{2} \times \mathbb{Z}_{p}\right) \rtimes \mathbb{Z}_{6}$	1

Classification for arc-transitive case

Ideas of proof

Classification for arc-transitive case

Ideas of proof
Let X be such graph, $A=\operatorname{Aut}(X)$ and N a minimal normal subgroup of A.

Classification for arc-transitive case

Ideas of proof
Let X be such graph, $A=\operatorname{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group.

Classification for arc-transitive case

Ideas of proof

Let X be such graph, $A=\operatorname{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order $9 p$.
- X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_{3} - and K_{4}-simple groups

Classification for arc-transitive case

Ideas of proof

Let X be such graph, $A=\operatorname{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order $9 p$.
- X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_{3} - and K_{4}-simple group .

Classification for arc-transitive case

Ideas of proof

Let X be such graph, $A=\operatorname{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order $9 p$.
- X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_{3} - and K_{4}-simple groups.

Classification for arc-transitive case

Ideas of proof

Let X be such graph, $A=\operatorname{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order $9 p$.
- X cannot be 2 -arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_{3} - and K_{4}-simple groups.

- N has two cases: $N_{v} \neq 1$ or $N_{v}=1$.

For $N_{v}=1, X$ is isomorphic to a normal Cayley graph on an abelian
group of order $9 p$ or some sporadic graphs.

Classification for arc-transitive case

Ideas of proof

Let X be such graph, $A=\operatorname{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order $9 p$.
- X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_{3} - and K_{4}-simple groups.

- N has two cases: $N_{v} \neq 1$ or $N_{v}=1$.

For $N_{v} \neq 1, X \cong C_{3 p}\left[3 K_{1}\right]$ or $C(3, p, 2)$.
group of order $9 p$ or some sporadic graphs.

Classification for arc-transitive case

Ideas of proof

Let X be such graph, $A=\operatorname{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order $9 p$.
- X cannot be 2-arc-transitive.

By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_{3} - and K_{4}-simple groups.

- N has two cases: $N_{v} \neq 1$ or $N_{v}=1$.

For $N_{v} \neq 1, X \cong C_{3 p}\left[3 K_{1}\right]$ or $C(3, p, 2)$.
For $N_{v}=1, X$ is isomorphic to a normal Cayley graph on an abelian group of order $9 p$ or some sporadic graphs.

Theorem 1.1, DM, 2019

Let p be a prime and X a connected hexavalent half-arc-transitive graph of order $9 p$. Then X, the automorphism group $\operatorname{Aut}(X)$ and the vertex stabilizer $\operatorname{Aut}(X)_{v}$ for a vertex $v \in V(X)$ are described in the following table:

p	$\operatorname{Aut}(X)$	$\operatorname{Aut}(X)_{v}$	Numeration
$9 \mid(p-1)$	$\mathbb{Z}_{3 p} \rtimes \mathbb{Z}_{9}$	\mathbb{Z}_{3}	1
$27 \mid(p-1)$	$\mathbb{Z}_{p} \rtimes \mathbb{Z}_{27}$	\mathbb{Z}_{3}	3

Classification for half-arc-transitive case

Ideas of proof

Classification for half-arc-transitive case

Ideas of proof

- Every minimal normal subgroup of A is solvable.

Classification for half-arc-transitive case

Ideas of proof

- Every minimal normal subgroup of A is solvable.

By using that A_{v} is a $\{2,3\}$-group and K_{3}-simple group.

By using quotient graphs relative to the orbits of M. If $M \not \not \not \mathbb{Z}_{3}$,
then X is arc-transitive.

Classification for half-arc-transitive case

Ideas of proof

- Every minimal normal subgroup of A is solvable.

By using that A_{v} is a $\{2,3\}$-group and K_{3}-simple group.

- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_{3}.
then X is arc-transitive.

Classification for half-arc-transitive case

Ideas of proof

- Every minimal normal subgroup of A is solvable. By using that A_{v} is a $\{2,3\}$-group and K_{3}-simple group.
- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_{3}. By using quotient graphs relative to the orbits of M. If $M \not \approx \mathbb{Z}_{3}$, then X is arc-transitive.

By using the edge-transitive graphs of order $3 p$ or 9 .

Classification for half-arc-transitive case

Ideas of proof

- Every minimal normal subgroup of A is solvable. By using that A_{v} is a $\{2,3\}$-group and K_{3}-simple group.
- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_{3}. By using quotient graphs relative to the orbits of M. If $M \not \approx \mathbb{Z}_{3}$, then X is arc-transitive.
- $A \cong \mathbb{Z}_{3} \times\left(\mathbb{Z}_{p} \rtimes \mathbb{Z}_{9}\right)$ with $9 \mid(p-1)$ or $\mathbb{Z}_{p} \rtimes \mathbb{Z}_{27}$ with $27 \mid(p-1)$.

Classification for half-arc-transitive case

Ideas of proof

- Every minimal normal subgroup of A is solvable. By using that A_{v} is a $\{2,3\}$-group and K_{3}-simple group.
- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_{3}. By using quotient graphs relative to the orbits of M. If $M \not \approx \mathbb{Z}_{3}$, then X is arc-transitive.
- $A \cong \mathbb{Z}_{3} \times\left(\mathbb{Z}_{p} \rtimes \mathbb{Z}_{9}\right)$ with $9 \mid(p-1)$ or $\mathbb{Z}_{p} \rtimes \mathbb{Z}_{27}$ with $27 \mid(p-1)$. By using the edge-transitive graphs of order $3 p$ or 9 .

Classification.
Constructins coset graph by the full automorphism group A. By using the Gl-property and calculating the orbits of A acting on the corresponding right cosets.

Classification for half-arc-transitive case

Ideas of proof

- Every minimal normal subgroup of A is solvable. By using that A_{v} is a $\{2,3\}$-group and K_{3}-simple group.
- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_{3}. By using quotient graphs relative to the orbits of M. If $M \not \approx \mathbb{Z}_{3}$, then X is arc-transitive.
- $A \cong \mathbb{Z}_{3} \times\left(\mathbb{Z}_{p} \rtimes \mathbb{Z}_{9}\right)$ with $9 \mid(p-1)$ or $\mathbb{Z}_{p} \rtimes \mathbb{Z}_{27}$ with $27 \mid(p-1)$. By using the edge-transitive graphs of order $3 p$ or 9 .
- Classification.
\qquad
corresponding right cosets.

Classification for half-arc-transitive case

Ideas of proof

- Every minimal normal subgroup of A is solvable. By using that A_{v} is a $\{2,3\}$-group and K_{3}-simple group.
- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_{3}. By using quotient graphs relative to the orbits of M. If $M \not \approx \mathbb{Z}_{3}$, then X is arc-transitive.
- $A \cong \mathbb{Z}_{3} \times\left(\mathbb{Z}_{p} \rtimes \mathbb{Z}_{9}\right)$ with $9 \mid(p-1)$ or $\mathbb{Z}_{p} \rtimes \mathbb{Z}_{27}$ with $27 \mid(p-1)$. By using the edge-transitive graphs of order $3 p$ or 9 .
- Classification.

Constructing coset graph by the full automorphism group A. By using the $G I$-property and calculating the orbits of A acting on the corresponding right cosets.

Examples: arc-transitive case

Example (Definition 2.1, Praeger and Xu, European J. Combin., 1989)

Let $p \geq 3$. Then define the graph $C(3, p, 2)=(V, E)$ as follows:

$$
V(X)=\mathbb{Z}_{p} \times \mathbb{Z}_{3}^{2}, \quad E=\{\{(i, x, y),(i+1, y, z)\}\}
$$

where \mathbb{Z}_{p} and \mathbb{Z}_{3} are additive groups of order p and $3, i \in \mathbb{Z}_{p}$ and $x, y, z \in \mathbb{Z}_{3}$. Then $C(3, p, 2)$ is a connected hexavalent symmetric graphs of order $9 p$ and $\operatorname{Aut}(C(3, p, 2))=S_{3}$ wr $D_{2 p}$.

[^0]
Aut $(C(3, p, 2))$ has a minimal normal subgroup isomorphic to \mathbb{Z}_{3}^{p}, which

 is not semiregular on $V(C(3 . D .2))$
Examples: arc-transitive case

Example (Definition 2.1, Praeger and Xu, European J. Combin., 1989)

Let $p \geq 3$. Then define the graph $C(3, p, 2)=(V, E)$ as follows:

$$
V(X)=\mathbb{Z}_{p} \times \mathbb{Z}_{3}^{2}, \quad E=\{\{(i, x, y),(i+1, y, z)\}\}
$$

where \mathbb{Z}_{p} and \mathbb{Z}_{3} are additive groups of order p and $3, i \in \mathbb{Z}_{p}$ and $x, y, z \in \mathbb{Z}_{3}$. Then $C(3, p, 2)$ is a connected hexavalent symmetric graphs of order $9 p$ and $\operatorname{Aut}(C(3, p, 2))=S_{3}$ wr $D_{2 p}$.

Remark. It is easy to check that $C(3,3 p, 1) \cong C_{3 p}\left[3 K_{1}\right]$. Clearly, $C(3, p, 2)$ is not isomorphic to $C_{3 p}\left[3 K_{1}\right]$ because

$$
\operatorname{Aut}(C(3, p, 2)) \neq \operatorname{Aut}\left(C_{3 p}\left[3 K_{1}\right]\right)
$$

$\operatorname{Aut}(C(3, p, 2))$ has a minimal normal subgroup isomorphic to \mathbb{Z}_{3}^{p}, which is not semiregular on $V(C(3, p, 2))$.

Examples: half-arc-transitive case

Let p be a prime and r an element of order 9 in \mathbb{Z}_{p}^{*}. Then $9 \mid(p-1)$. Suppose that $G(3 p \rtimes 9)=\langle a, b, c| a^{p}=b^{9}=c^{3}=[a, c]=[b, c]=$ $\left.1, b^{-1} a b=a^{r}\right\rangle \cong \mathbb{Z}_{3} \times\left(\mathbb{Z}_{p} \rtimes \mathbb{Z}_{9}\right)$ with $r \neq 1$.

Examples: half-arc-transitive case

Let p be a prime and r an element of order 9 in \mathbb{Z}_{p}^{*}. Then $9 \mid(p-1)$. Suppose that $G(3 p \rtimes 9)=\langle a, b, c| a^{p}=b^{9}=c^{3}=[a, c]=[b, c]=$ $\left.1, b^{-1} a b=a^{r}\right\rangle \cong \mathbb{Z}_{3} \times\left(\mathbb{Z}_{p} \rtimes \mathbb{Z}_{9}\right)$ with $r \neq 1$.

Construction 4.3, DM, 2019

Take $H=\left\langle b^{3} c\right\rangle \leq G(3 p \rtimes 9)$ and $g=a b$. Then $H \cong \mathbb{Z}_{3}$. Define the following coset graph:

$$
\mathcal{H C}_{3 p \rtimes 9}(9 p)=\operatorname{Cos}\left(G(3 p \rtimes 9), H, H\left\{g, g^{-1}\right\} H\right) .
$$

The coset graph $\mathcal{H C}_{3 p \rtimes 9}(9 p)$ is a connected hexavalent half-arc-transitive graph of order $9 p$, and

$$
\operatorname{Aut}\left(\mathcal{H C}_{3 p \rtimes 9}(9 p)\right) \cong G(3 p \rtimes 9) .
$$

Examples: half-arc-transitive case

Let p be a prime and s an element of order 27 in \mathbb{Z}_{p}^{*}. Then $27 \mid(p-1)$. Suppose that $G(p \rtimes 27)=\left\langle x, y \mid x^{p}=y^{27}=1, y^{-1} x y=x^{s}\right\rangle \cong \mathbb{Z}_{p} \rtimes \mathbb{Z}_{27}$ with $s \neq 1$.

Examples: half-arc-transitive case

Let p be a prime and s an element of order 27 in \mathbb{Z}_{p}^{*}. Then $27 \mid(p-1)$. Suppose that $G(p \rtimes 27)=\left\langle x, y \mid x^{p}=y^{27}=1, y^{-1} x y=x^{5}\right\rangle \cong \mathbb{Z}_{p} \rtimes \mathbb{Z}_{27}$ with $s \neq 1$.

Construction 4.5, DM, 2019

Take $K=\left\langle y^{9}\right\rangle \leq G(p \rtimes 27)$. Then $K \cong \mathbb{Z}_{3}$. Set $g_{1}=x y, g_{2}=x y^{2}$, $g_{3}=x y^{4}$. Define the following coset graphs:

$$
\begin{aligned}
& \mathcal{H C}_{p \rtimes 27}(9 p, 1)=\operatorname{Cos}\left(G(p \rtimes 27), K, K\left\{g_{1}, g_{1}^{-1}\right\} K\right) ; \\
& \mathcal{H C}_{p \rtimes 27}(9 p, 2)=\operatorname{Cos}\left(G(p \rtimes 27), K, K\left\{g_{2}, g_{2}^{-1}\right\} K\right) ; \\
& \mathcal{H C}_{p \rtimes 27}(9 p, 3)=\operatorname{Cos}\left(G(p \rtimes 27), K, K\left\{g_{3}, g_{3}^{-1}\right\} K\right) .
\end{aligned}
$$

The coset graphs $\mathcal{H C}_{p \rtimes 27}(9 p, i)$ are connected hexavalent half-arc-transitive graphs of order $9 p$, and for $i=1,2,3$

$$
\operatorname{Aut}\left(\mathcal{H C}_{p \rtimes 27}(9 p, i)\right) \cong G(p \rtimes 27) .
$$

Thank you!

[^0]: Remark. It is easy to check that $C(3,3 p, 1) \cong C$
 $C(3, p, 2)$ is not isomorphic to $C_{3 p}\left[3 K_{1}\right]$ because

