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Distance matrix

The distance matrix D = D(G) of a graph G:

Dij = dG(i , j) is the minimum length of a path from i to j

1 3 5

2 4

D =


0 1 2 2 3
1 0 1 1 2
2 1 0 1 1
2 1 1 0 1
3 2 1 1 0


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Addressing problem

We now introduce a alphabet {0,1, ∗} and form addresses by
taking n-tuples from this alphabet. The distance between two
addresses is defined to be the number of places where one has
a 0 and the other a 1 (so the stars do not contribute to the
distance).

Example
d(111 ∗ ∗,10 ∗ 1∗) = 1, d(10 ∗ 1∗, ∗0001) = 1,
d(10101, ∗ ∗ ∗ ∗ ∗) = 0, d(111 ∗ ∗,00000) = 3.

For an addressing of a graph G, we require that the distance of
any two vertices in G is equal to the distance of their addresses.
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Example

1 3 5

2 4

1 1 1 1 ∗ ∗
2 1 0 ∗ 1 ∗
3 ∗ 0 0 0 1
4 0 0 1 ∗ ∗
5 0 0 0 0 0

and

1 0 1 1 1
2 0 1 ∗ 0
3 1 ∗ 0 ∗
4 0 0 ∗ 0
5 1 0 1 0

5 / 28



N(G) and the lower bound
N(G): the minimum value of k for which there exists an
addressing of G with length k .

It is known that finding an addressing of length k is equivalent
to finding 0-1 matrices X ,Y with k columns such that

XY T + YX T = D(G).

Let n+, respectively n−, be the number of positive, respectively
negative, eigenvalues of the distance matrix D(G) of the graph
G.

Theorem (Graham and Pollak, 1971)

N(G) ≥ max{n+,n−}.

If an addressing of G is of length max{n+,n−}, we say the
addressing is eigensharp.
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Upper bound of N(G)

In 1971, Graham and Pollak conjectured that

N(G) ≤ |V (G)| − 1.

This is proved by Winkler in 1983.

Theorem (Winkler, 1983)
N(G) ≤ |V (G)| − 1.
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History

I For tree T , N(T ) = n(T )− 1; N(C2n+1) = 2n, N(C2n) = n.
[Graham and Pollak, 1971]

I For a block graph G, N(G) = n − 1. (A consequence of
some known result)

I For Petersen graph P, N(P) = 6 and it has no eigensharp
adressing (n− = 5). [Elzinga, Gregory and Vander Meulen,
2004]

I The number N(Km,n) for complete bipartite graphs. [Fujii
and Sawa, 2008]

I N(G) =
∑k

i=1(ni − 1) for G = Kn1�Kn2� · · ·�Knk . [Cioaba,
Elzinga et al, 2018]

I N(J(n, k)) ≤ k(n − k) for Johnson graphs. [Alon, Cioaba,
Gilbert, Koolen and McKay, 2019]
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Inertia and principal leading minors
The inertia of a matrix is (n+,n−,n0).

Lemma (Jones, 1950)
Let A be a nonsingular symmetric n × n matrix with principal
leading minors D1, . . . ,Dn. If there is no consecutive two zeros
in the sequence D1, . . . ,Dn, then n− is the number of sign
changes in the sequence 1,D1, . . . ,Dn, ignoring the zeros in
the sequence.

Example

A =


−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

 ,

(1,D1,D2,D3,D4) = (1,−2,3,−4,5), inertia(A) = (0,4,0).
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Examples

Theorem (Graham and Pollak, 1971)
For tree T of order n, det(D(T )) = (−1)n−1(n − 1)2n−2

Let T be a tree of order n. From the theorem above, we have

(1,D1, . . . ,Dn) = (+,0,−,+,−, . . .),

so inertia(D(T )) = (1,n − 1,0) and N(T ) = n − 1.

Since D(Kn) = A(Kn), det(D(Kn)) = (−1)n−1(n − 1). We also
have inertia(D(Kn)) = (1,n − 1,0) and N(Kn) = n − 1.
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cof(A)

The (i , j)-th cofactor of A is (−1)i+j det(A(i |j)), where A(i |j) is
the matrix obtained from A by deleting the i-th row and the j-th
column.

Define cof(A) be the sum of all cofactors of A.
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Blocks of a graph

In a graph, a block is a maximal subgraph without a cut vertex.
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General case

Theorem (Graham, Hoffman and Hosoya, 1977)
Let G be a connected graph with V (G) = 1, . . . ,n. Let
G1, . . . ,Gk be the blocks of G. Then the following assertions
hold:

(i) cof(D(G)) =
k∏

i=1

cof(D(Gi))

(ii) det(D(G)) =
k∑

i=1

det(DGi )
k∏

j 6=i

cof(D(Gj)).

Theorem
If each block of G of order n is a complete graph, then
N(G) = n − 1.
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Smith normal form

Given an m × n integer matrix P, there exist matrices U,V
which are invertible in Mm(Z) and Mn(Z) respectively such that
UPV = S and

(i) The off-diagonal entries of S are all zero.
(ii) The diagonal entries s1, s2, . . . of S satisfies si |sj for i < j .

The matrix S (which is unique) is called the Smith normal form
of P, denoted by Snf(P).
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Smith normal form

In 2008, Hou and Woo showed that
I For tree T of n vertices, Snf(D(T )) = I2 ⊕ 2n−3 ⊕ (2n − 2).

I Snf(D(Cn)) =

{
In−1 ⊕ (n2−1

4 ), if n is odd
I2 ⊕ 2I n

2−2 ⊕ (n)⊕ 0I n
2−1, if n is even

.

In 2016, Chen and Hou showed that for block graphs G of order
n with blocks Kn1 ,Kn2 , . . . ,Knk ,

Snf(D(G)) = In−k−1 ⊕



k 1 1 · · · 1 1
1 n1 0 · · · 0 0
1 0 n2 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · nk−1 0
1 0 0 · · · 0 nk


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Classes of graphs with constant N, det, cof, inertia, Snf

In 2013, Chang and Gosil showed that inertia(D(G)) depends
only on the blocks of G. In their proof, it is also garanteed that
Snf(D(G)) also depend only on the blocks of G.

Therefore, if the blocks of G are given, each of det(D(G)),
cof(D(G)), inertia(D(G)), Snf(D(G)) is constant. Furthermore,
if each block is a clique, N(G) is constant.

Do other classes of graphs have constant det(D(G)),
cof(D(G)), inertia(D(G)), Snf(D(G)) or N(G), or some other
constant invariants?

16 / 28



The 2-clique paths
Let p1, . . . ,pm be integers at least 3. A 2-clique path is obtained
by gluing an edge of Kpi to an edge of Kpi+1 , i = 1, . . . ,m; an
edge cannot be glued twice. The set of such graphs is denoted
by CPp1,p2,...,pm .

1 2

3

4

5

6
7

8

G

Figure: A graph G in CP2:3,4,3,4
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Theorem
Let G ∈ CP2:p1,...,pm and n = |V (G)|. Then

det(D(G)) = (−1)n−1

(
1 +

∑
k odd

(pk − 2)

)(
1 +

∑
k even

(pk − 2)

)
,

inertia(D(G)) = (1,n − 1,0) and N(G) = n − 1.

Theorem
Let G ∈ CP2:p1,...,pm and n = |V (G)|. Then

cof(D(G)) = (−1)n−1n.

Corollary
Let G be a linear 2-tree on n vertices. Then

det(D(G)) = (−1)n−1
(

1 +

⌊
n − 2

2

⌋)(
1 +

⌈
n − 2

2

⌉)
and cof(D(G)) = (−1)n−1n. 18 / 28



Applications on addressing problem

Theorem
If G is a connected graph of order n whose blocks are 2-clique
paths, then

inertia(D(G)) = (1,n − 1,0)

and N(G) = n − 1.
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CP (clique-path) graphs CPs
Let s = q1,q2, . . . ,qn. (qi ≥ 2 for i ≥ 3.)
• vertex k and its backward neighbors form a clique
• |N(k) ∩ [k − 1]| = qk
• N(k) ∩ [k − 1] = {ak} ∪ [bk , k − 1], where bk = k − qk + 1

is fixed and ak may vary.

1 3 5 7

2 4 6 8

G1

1
2

3 4

5

67
8

G2

Figure: Two graphs G1 and G2 in CP0,1,2,2,2,2,3,3

a2 a3 a4 a5 a6 a7 a8
1 1 2 3 4 4 5

a2 a3 a4 a5 a6 a7 a8
1 1 1 1 1 1 1
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CP (clique-path) graphs CPs

Theorem (Cheng and Lin, 2018)
Let s be a sequence. For any G ∈ CPs, the matrix ET D(G)E is
only depend on s, where E is an upper triangular matrix with 1
on the diagonal.

Corollary
Let s be a sequence. Then for any graph G ∈ CPs, det(D(G)),
cof(D(G)), inertia(D(G)) and the Smith normal form of D(G)
are uniquely determined by s.
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Attaching the CP graphs

1 3 5 7

2 4 6 8

G1

3

2 4

5

67
8

1

G2

det(D(G1)) = det(D(G2)).

cof(D(G1)) = cof(D(G2)).

inertia(D(G1)) = inertia(D(G2)).

Snf(D(G1)) = Snf(D(G2)).
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Attaching the CP graphs

1

2 3

G1

1

2 3

G2

det(D(G1)) = det(D(G2)) = 56.
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2-cycle-clique path

Let (G1,G2, . . . ,Gk ) be a sequence of graphs with Gi a cycle or
a clique for 1 ≤ i ≤ k .

A 2-cycle-clique path is obtained by gluing an edge of Gi to an
edge of Gi+1, i = 1, . . . ,m; an edge cannot be glued twice.

(K3,K4,C5,K3)
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2-cycle-clique path

Theorem (Cheng and Lin, 2019+)
Let G be a 2-cycle-clique path corresponding to G1,G2, . . . ,Gk
of order n. Then det(G) is a constant.
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Concluding remark

Classes of graphs with constant invariants (on distance matrix)

• Determined by blocks: Snf, inertia, det, cof; N when every
block is a clique
• CP graphs, 2-clique path: Snf, inertia, det, cof
• 2-cycle-clique path: det, cof
• A graph attach CP graphs: Snf, inertia, det, cof

Problem: Do other classes of graphs have constant some
invariants?
Problem: Can we describe inertia(G) or Snf(G) by the blocks of
G?
Problem: Are there some relations between Snf, inertia, det, cof?
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Thank you for your attention
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