On Some Gallai Ramsey Numbers

Yaojun CHEN

Department of Mathematics, Nanjing University Email: yaojunc@nju.edu.cn

August, 2019

OUTLINE

- 1. Introduction
- 2. Cycles
- 3. Complete Bipartite Graphs
- 4. Complete Graphs

1. Introduction

Gallai Ramsey number

A Gallai k-coloring is

a *k*-edge-coloring of a complete graph K_N such that no triangle has all its edges colored differently.

Given a graph *H* and an integer $k \ge 1$, the *Gallai Ramsey number* $GR_k(H)$ of *H* is the least positive integer *N* such that every Gallai *k*-coloring of the complete graph K_N contains a monochromatic copy of *H*. Original definition of k-color Ramsey number

Let G_i be a simple graph of order n_i , $1 \le i \le k$.

The *Ramsey number* $R(G_1, G_2, ..., G_k)$ is the minimum integer *N* with the following property:

If the edges of K_N are colored by k colors, then there exists some i with $1 \le i \le k$ such that K_N has a subgraph in color i, which is isomorphic to G_i .

If $G_1=G_2=\cdots=G_k=H$, we just write $R(G_1,G_2,\ldots,G_k)=R_k(H).$

Background of Gallai coloring

- T. Gallai, Transitiv orientierbare Graphen,
 Acta Math. Acad. Sci. Hung. 18(1967) 25–66.
- Information theory: entropy of graphs
- Perfect graph
- Partially ordered sets

Let $R_k(H)$ be the *k*-color classical Ramsey number for *H*, then it is easy to see that

 $GR_k(H) \leq R_k(H)$ for any graph H.

Theorem 1. For an integer $k \ge 1$ and a graph *H* with no isolated vertices, $GR_k(H)$ is *exponential* in *k* if *H* is not bipartite, *linear* in *k* if *H* is bipartite but not a star, and *constant* (does not depend on *k*) when *H* is a star.

[Gyárfás et al., JGT, 64(2010), 233-243.]

2. Cycles

If *H* is a cycle, the by Theorem 1, $GR_k(C_{2n})$ is *linear* in *k*, and $GR_k(C_{2n+1})$ is *exponential* in *k*.

Theorem 2. For all $k \ge 1$ and $n \ge 3$, $(n-1)k+n+1 \le GR_k(C_{2n}) \le (n-1)k+3n$. [Hall et al., JGT, 75(2014), 59-74]

Theorem 3. For all $k \ge 1$ and $n \ge 2$, $n \cdot 2^k + 1 \le GR_k(C_{2n+1}) \le (n \ln n) \cdot (2^{k+3} - 3)$. [Hall et al., JGT, 75(2014), 59-74] **Theorem 4**. For all $k \ge 2$ and $n \ge 2$, $n \cdot 2^k + 1 \le GR_k(C_{2n+1}) \le (4n + n \ln n) \cdot 2^k$. [Chen et al., submitted]

Theorem 5. For all $k \ge 3$ and $n \ge 8$, $n \cdot 2^k + 1 \le GR_k(C_{2n+1}) \le (n \ln n) \cdot 2^k - (k+1)n + 1$. [Bosse et al., submitted]

Except these general bounds for cycles, some exact values of $GR_k(C_{2n})$ and $GR_k(C_{2n+1})$ are determined for *n* is small.

Theorem 6. $GR_k(C_5)=2\cdot 2^k+1$.

[Fujita and Magnant, DM, 311(2011) 1247-1254]

Theorem 7. $GR_k(C_7)=3\cdot 2^k+1$. [Bruce and Song, DM, 342(2019) 1191-1194]

Theorem 8. $GR_k(C_9)=4\cdot 2^k+1$ and $GR_k(C_{11})=5\cdot 2^k+1$. [Bosse and Song, submitted]

Theorem 9. $GR_k(C_{10})=4k+6$ and $GR_k(C_{12})=5k+7$. [Lei et al., submitted]

Our Results

Let C_m denote a cycle of length m. Our main results are as follows.

Theorem 10. For all $k \ge 1$ and $n \ge 3$, $GR_k(C_{2n}) = (n-1)k+n+1$. [Zhang et al., preprint, 2018]

Theorem 11. For all $k \ge 1$ and $n \ge 2$,

 $GR_k(C_{2n+1})=n\cdot 2^k+1.$

[Zhang et al., preprint, 2018]

Low bound for $GR_k(C_{2n})$, where $k \ge 1$ and $n \ge 3$: $GR_k(C_{2n}) \ge (n-1)k+n+1$.

Low bound for $GR_k(C_{2n+1})$, where $k \ge 1$ and $n \ge 3$: $GR_k(C_{2n+1}) \ge n \cdot 2^k + 1$.

$$\cdots \cdots \qquad G_k = \bigcirc G_{k-1} \bigcirc G_{k-1} \bigcirc$$

An important structural result of Gallai on Gallai colorings of complete graphs:

Theorem A. For any Gallai coloring *c* of a complete graph *G* with $|G| \ge 2$, V(G) can be partitioned into nonempty sets V_1, V_2, \dots, V_p with p > 1 so that at most two colors are used on the edges in $E(G) \setminus (E(V_1) \cup \dots \cup E(V_p))$

and only one color is used on the edges between any fixed pair (V_i, V_j) under c, where $E(V_i)$ denotes the set of edges in $G[V_i]$ for all $i, 1 \le i \le p$.

Sketch of the Proofs of Theorems 10 and 11

For any Gallai *k*-colored complete graph *G* with $|G| \ge n \ge 2$ and color classes E_1, \dots, E_k , let q(G) denote the number of colors $i \in \{1, 2, \dots, k\}$ such that H_i with $V(H_i) = V(G)$ and $E(H_i) = E_i$ has a component of order at least *n*.

Theorem 12. Let *G* be a Gallai *k*-colored complete graph with $|G| \ge n \ge 3$. If $|G| \ge (n-1) \cdot q(G) + n + 1$, then *G* has a monochromatic C_{2n} . Suppose *G* has no monochromatic copy of C_{2n} . Choose *G* with q=q(G) minimum. Assume that for each color $i \in \{1,2,\ldots,q\}$, H_i has a component of order at least *n*.

Let $X_1, ..., X_q$ be disjoint subsets of V(G) such that for each $i \in \{1, 2, ..., q\}, X_i$ (*possibly empty*) is mccomplete in color i to $V(G) \setminus (X_1 \cup \cdots \cup X_q)$.

Let $X=X_1 \cup \cdots \cup X_q$.

Choose X_1, \ldots, X_q such that

|X| is as large as possible subject to $|X| \le |G| - n$.

3. Complete Bipartite Graphs

Let $K_{m,n}(m \ge n)$ be a complete bipartite graphs. By Theorem 1, $GR_k(K_{m,n})$ is *linear* in *k*.

It is known that $GR_k(K_{m,n}) \ge (n-1)(k-2) + R_2(K_{m,n}).$

Conjecture 1. Let $k \ge 2$ and $m \ge n \ge 1$ be integers. If $R_2(K_{m,n}) \ge 3m-2$, then $GR_k(K_{m,n}) = (n-1)(k-2) + R_2(K_{m,n})$. [Wu et al., DAM, 254(2019),196-203.]

Theorem 13. For integers $k \ge 2$, $m \ge 2$ and $n \ge 2$, $GR_k(K_{m,n}) \le [R_2(K_{m,n})-1][(m+n-1)^2k+2(m+n+1)].$ [Gyárfás et al., JGT, 64(2010), 233-243.]

Theorem 14. For fixed integers $k \ge 2$ and $m \ge 1$, if $n \rightarrow \infty$, then

 $GR_k(K_{m,n}) \leq (2^n + 2^{n/2+1} + k)m + 4n^3.$ [Chen et al., G&C, 34(2018), 1185-1196.]

Theorem 15. Let $R=max\{R_2(K_{m,n}), 3m-2\}$. Then for integers $k \ge 2$ and $m \ge n \ge 1$, $GR_k(K_{m,n}) \le (n-1)(k-3) + (n-1)R + 1$. [Wu et al., DAM, 254(2019), 196-203.] A *uniform k-coloring* of a complete multipartite graph $G=(V_1,...,V_t)$ is a *k-edge coloring* such that the edges between any two parts receive the same color.

Let $l \geq 1$ and G_1, \dots, G_k be k graphs. The *l*-uniform Ramsey number $R^l(G_1,...,G_k)$ is defined as the minimum integer N such that, any uniform *k*-coloring of a complete multipartite graph on N vertices with each part of cardinality no more than l, must contain a monochromatic copy G_i in color *i* for some *i*.

 $R^{l}(G_{1},...,G_{k})$ is well-defined because $R^{l}(G_{1},...,G_{k}) \leq l \cdot (R(G_{1},...,G_{k})-1)+1.$

$$R^1(G_1,...,G_k) = R(G_1,...,G_k).$$

In general, $R(G_1,...,G_k) \leq R^l(G_1,...,G_k) \leq l \cdot (R(G_1,...,G_k)-1)+1.$ **Remark 1.** If each G_i is a complete graph, then $R^l(G_1,...,G_k) = l \cdot (R(G_1,...,G_k)-1)+1.$ If C = m = C = H we write

If
$$G_1 = \cdots = G_k = H$$
, we write
 $R_k^{\ell}(H) = R^{\ell}(G_1, \dots, G_k)$

Theorem 16. Let $k \ge 3$ and $m \ge n \ge 2$ be integers. Then $GR_k(K_{m,n}) = (n-1)(k-2) + R_2^{m-1}(K_{m,n}).$ [Liu and Chen, Preprint, 2019.]

Theorem 17. For $k \ge 3$ and $m \ge n \ge 2$,

$$R_2^{m-1}(K_{m,n}) \le 2R_2(K_{m,n}) + n - 2.$$

[Liu and Chen, Preprint, 2019.]

Theorem 18. Let $m \ge 4$. If $R_2(K_{3,m}) \ge 11m/2-4$, then $R_2^{m-1}(K_{3,m}) = R_2(K_{3,m})$. [Liu and Chen, Preprint, 2019.]

Theorem 19. For *k*≥2,

$$GR_k(K_{3,4})=2(k-2)+R_2(K_{3,4}).$$

[Liu and Chen, Preprint, 2019.]

4. Complete Graphs

For *H* being a complete graph K_t , Fox and Grinshpun posed the following.

Conjecture 1. For $k \ge 1$ and $t \ge 3$,

 $GR_{k}(K_{t}) = \begin{cases} [R_{2}(K_{t})-1]^{k/2}+1 & \text{if } k \text{ is even,} \\ (t-1)[R_{2}(K_{t})-1]^{(k-1)/2}+1 & \text{if } k \text{ is odd.} \end{cases}$

[Fox and Grinshpun, JCTB, 111(2015), 75-125.]

Conjecture 1 is true for *t*=3.

[Chung and Graham, Comb., 3(1983), 315-324.]

Thank you for your altention!