On Some Gallai Ramsey Numbers

Yaojun CHEN

Department of Mathematics, Nanjing University
Email: yaojunc@nju.edu.cn

August, 2019

OUTLINE

1. Introduction

2. Cycles
3. Complete Bipartite Graphs
4. Complete Graphs

1. Introduction

Gallai Ramsey number

A Gallai k-coloring is
a k-edge-coloring of a complete graph K_{N} such that no triangle has all its edges colored differently.

Given a graph H and an integer $k \geq 1$,
the Gallai Ramsey number $G R_{k}(H)$ of H is the least positive integer N such that every Gallai k-coloring of the complete graph K_{N} contains a monochromatic copy of H.

Original definition of k-color Ramsey number

 Let G_{i} be a simple graph of order $n_{i}, 1 \leq i \leq k$.The Ramsey number $R\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ is the minimum integer N with the following property:

If the edges of K_{N} are colored by k colors, then there exists some i with $1 \leq i \leq k$ such that K_{N} has a subgraph in color i, which is isomorphic to G_{i}.

If $G_{1}=G_{2}=\cdots=G_{k}=H$, we just write

$$
R\left(G_{1}, G_{2}, \ldots, G_{k}\right)=R_{k}(H) .
$$

Background of Gallai coloring

T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hung. 18(1967) 25-66.

Information theory: entropy of graphs
Perfect graph
Partially ordered sets

Let $R_{k}(H)$ be the k-color classical Ramsey number for H, then it is easy to see that

$$
G R_{k}(H) \leq R_{k}(H) \text { for any graph } H .
$$

Theorem 1. For an integer $k \geq 1$ and a graph H with no isolated vertices, $G R_{k}(H)$ is exponential in k if H is not bipartite, linear in k if H is bipartite but not a star, and constant (does not depend on k) when H is a star.
[Gyárfás et al., JGT, 64(2010), 233-243.]

2. Cycles

If H is a cycle, the by Theorem 1, $G R_{k}\left(C_{2 n}\right)$ is linear in k, and $G R_{k}\left(C_{2 n+1}\right)$ is exponential in k.

Theorem 2. For all $k \geq 1$ and $n \geq 3$,

$$
(n-1) k+n+1 \leq G R_{k}\left(C_{2 n}\right) \leq(n-1) k+3 n .
$$

[Hall et al., JGT, 75(2014), 59-74]
Theorem 3. For all $k \geq 1$ and $n \geq 2$,

$$
n \cdot 2^{k}+1 \leq G R_{k}\left(C_{2 n+1}\right) \leq(n \ln n) \cdot\left(2^{k+3}-3\right)
$$

[Hall et al., JGT, 75(2014), 59-74]

Theorem 4. For all $k \geq 2$ and $n \geq 2$,

$$
n \cdot 2^{k}+1 \leq G R_{k}\left(C_{2 n+1}\right) \leq(4 n+n \ln n) \cdot 2^{k}
$$

[Chen et al., submitted]
Theorem 5. For all $k \geq 3$ and $n \geq 8$,

$$
n \cdot 2^{k}+1 \leq G R_{k}\left(C_{2 n+1}\right) \leq(n \ln n) \cdot 2^{k}-(k+1) n+1
$$

[Bosse et al., submitted]
Except these general bounds for cycles, some exact values of $G R_{k}\left(C_{2 n}\right)$ and $G R_{k}\left(C_{2 n+1}\right)$ are determined for n is small.

Theorem 6. $G R_{k}\left(C_{5}\right)=2 \cdot 2^{k}+1$.
[Fujita and Magnant, DM, 311(2011) 1247-1254]
Theorem 7. $G R_{k}\left(C_{7}\right)=3 \cdot 2^{k}+1$.
[Bruce and Song, DM, 342(2019) 1191-1194]

Theorem 8. $G R_{k}\left(C_{9}\right)=4 \cdot 2^{k}+1$ and $G R_{k}\left(C_{11}\right)=5 \cdot 2^{k}+1$. [Bosse and Song, submitted]

Theorem 9. $G R_{k}\left(C_{10}\right)=4 k+6$ and $G R_{k}\left(C_{12}\right)=5 k+7$.
[Lei et al., submitted]

Our Results

Let C_{m} denote a cycle of length m.
Our main results are as follows.
Theorem 10. For all $k \geq 1$ and $n \geq 3$,

$$
\begin{aligned}
G R_{k}\left(C_{2 n}\right) & =(n-1) k+n+1 . \\
& \quad[\text { Zhang et al., preprint, 2018] }
\end{aligned}
$$

Theorem 11. For all $k \geq 1$ and $n \geq 2$,

$$
G R_{k}\left(C_{2 n+1}\right)=n \cdot 2^{k}+1 .
$$

[Zhang et al., preprint, 2018]

Low bound for $G R_{k}\left(C_{2 n}\right)$, where $k \geq 1$ and $n \geq 3$: $G R_{k}\left(C_{2 n}\right) \geq(n-1) k+n+1$.

Low bound for $G R_{k}\left(C_{2 n+1}\right)$, where $k \geq 1$ and $n \geq 3$: $G R_{k}\left(C_{2 n+1}\right) \geq n \cdot 2^{k}+1$.

An important structural result of Gallai on Gallai colorings of complete graphs:

Theorem A. For any Gallai coloring c of a complete graph G with $|G| \geq 2, \quad V(G)$ can be partitioned into nonempty sets $V_{1}, V_{2}, \ldots, V_{p}$ with $p>1$ so that at most two colors are used on the edges in

$$
E(G) \backslash\left(E\left(V_{1}\right) \cup \cdots \cup E\left(V_{p}\right)\right)
$$

and only one color is used on the edges between any fixed pair $\left(V_{i}, V_{j}\right)$ under c, where $E\left(V_{i}\right)$ denotes the set of edges in $G\left[V_{i}\right]$ for all $i, 1 \leq i \leq p$.

Sketch of the Proofs of Theorems 10 and 11

For any Gallai k-colored complete graph G with $|G| \geq n \geq 2$ and color classes E_{1}, \ldots, E_{k}, let $q(G)$ denote the number of colors $i \in\{1,2, \ldots, k\}$ such that H_{i} with $V\left(H_{i}\right)=V(G)$ and $E\left(H_{i}\right)=E_{i}$ has a component of order at least n.

Theorem 12. Let G be a Gallai k-colored complete graph with $|G| \geq n \geq 3$. If $|G| \geq(n-1) \cdot q(G)+n+1$, then G has a monochromatic $C_{2 n}$.

Suppose G has no monochromatic copy of $C_{2 n}$. Choose G with $q=q(G)$ minimum. Assume that for each color $i \in\{1,2, \ldots, q\}, H_{i}$ has a component of order at least n.

Let X_{1}, \ldots, X_{q} be disjoint subsets of $V(G)$ such that for each $i \in\{1,2, \ldots, q\}, X_{i}$ (possibly empty) is mccomplete in color i to $V(G) \backslash\left(X_{1} \cup \cdots \cup X_{q}\right)$.

Let $X=X_{1} \cup \cdots \cup X_{q}$.
Choose X_{1}, \ldots, X_{q} such that
$|X|$ is as large as possible subject to $|X| \leq|G|-n$.

3. Complete Bipartite Graphs

Let $K_{m, n}(m \geq n)$ be a complete bipartite graphs.
By Theorem 1, $G R_{k}\left(K_{m, n}\right)$ is linear in k.
It is known that

$$
G R_{k}\left(K_{m, n}\right) \geq(n-1)(k-2)+R_{2}\left(K_{m, n}\right)
$$

Conjecture 1. Let $k \geq 2$ and $m \geq n \geq 1$ be integers. If $R_{2}\left(K_{m, n}\right) \geq 3 m-2$, then

$$
\begin{aligned}
& G R_{k}\left(K_{m, n}\right)=(n-1)(k-2)+R_{2}\left(K_{m, n}\right) \\
& \quad[\text { Wu et al., DAM, } 254(2019), 196-203 .]
\end{aligned}
$$

Lower bound for $G R_{k}\left(K_{m, n}\right)$:

$$
G R_{k}\left(K_{m, n}\right) \geq(n-1)(k-2)+R_{2}\left(K_{m, n}\right)
$$

Theorem 13. For integers $k \geq 2, m \geq 2$ and $n \geq 2$,

$$
\begin{aligned}
G R_{k}\left(K_{m, n}\right) \leq\left[R_{2}\left(K_{m, n}\right)-1\right]\left[(m+n-1)^{2} k+2(m+n+1)\right] . \\
{[G \text { yárfás et al., JGT, 64(2010), 233-243.] }}
\end{aligned}
$$

Theorem 14. For fixed integers $k \geq 2$ and $m \geq 1$, if $n \rightarrow \infty$, then

$$
\begin{aligned}
& G R_{k}\left(K_{m, n}\right) \leq\left(2^{n}+2^{n / 2+1}+k\right) m+4 n^{3} . \\
& \text { [Chen et al., G\&C, 34(2018), 1185-1196.] }
\end{aligned}
$$

Theorem 15. Let $R=\max \left\{R_{2}\left(K_{m, n}\right), 3 m-2\right\}$. Then for integers $k \geq 2$ and $m \geq n \geq 1$,

$$
G R_{k}\left(K_{m, n}\right) \leq(n-1)(k-3)+(n-1) R+1 .
$$

[Wu et al., DAM, 254(2019),196-203.]

A uniform k-coloring of a complete multipartite graph $G=\left(V_{1}, \ldots, V_{t}\right)$ is a k-edge coloring such that the edges between any two parts receive the same color.

Let $l \geq 1$ and G_{1}, \ldots, G_{k} be k graphs.
The l-uniform Ramsey number $R^{l}\left(G_{1}, \ldots, G_{k}\right)$ is defined as the minimum integer N such that, any uniform k-coloring of
a complete multipartite graph on N vertices with each part of cardinality no more than l, must contain a monochromatic copy G_{i} in color i for some i.
$R^{l}\left(G_{1}, \ldots, G_{k}\right)$ is well-defined because

$$
R^{l}\left(G_{1}, \ldots, G_{k}\right) \leq l \cdot\left(R\left(G_{1}, \ldots, G_{k}\right)-1\right)+1
$$

$$
R^{1}\left(G_{1}, \ldots, G_{k}\right)=R\left(G_{1}, \ldots, G_{k}\right) .
$$

In general,

$$
R\left(G_{1}, \ldots, G_{k}\right) \leq R^{l}\left(G_{1}, \ldots, G_{k}\right) \leq l \cdot\left(R\left(G_{1}, \ldots, G_{k}\right)-1\right)+1
$$

Remark 1. If each G_{i} is a complete graph, then

$$
R^{l}\left(G_{1}, \ldots, G_{k}\right)=l \cdot\left(R\left(G_{1}, \ldots, G_{k}\right)-1\right)+1
$$

If $G_{1}=\cdots=G_{k}=H$, we write

$$
R_{k}^{\ell}(H)=R^{\ell}\left(G_{1}, \ldots, G_{k}\right)
$$

Theorem 16. Let $k \geq 3$ and $m \geq n \geq 2$ be integers. Then

$$
G R_{k}\left(K_{m, n}\right)=(n-1)(k-2)+R_{2}^{m-1}\left(K_{m, n}\right)
$$

[Liu and Chen, Preprint, 2019.]

Theorem 17. For $k \geq 3$ and $m \geq n \geq 2$,

$$
R_{2}^{m-1}\left(K_{m, n}\right) \leq 2 R_{2}\left(K_{m, n}\right)+n-2 .
$$

[Liu and Chen, Preprint, 2019.]
Theorem 18. Let $m \geq 4$. If $R_{2}\left(K_{3, m}\right) \geq 11 m / 2-4$, then

$$
R_{2}^{m-1}\left(K_{3, m}\right)=R_{2}\left(K_{3, m}\right) .
$$

[Liu and Chen, Preprint, 2019.]
Theorem 19. For $k \geq 2$,

$$
G R_{k}\left(K_{3,4}\right)=2(k-2)+R_{2}\left(K_{3,4}\right) .
$$

[Liu and Chen, Preprint, 2019.]

4. Complete Graphs

For H being a complete graph K_{t},
Fox and Grinshpun posed the following.
Conjecture 1. For $k \geq 1$ and $t \geq 3$,
$G R_{k}\left(K_{t}\right)= \begin{cases}{\left[R_{2}\left(K_{t}\right)-1\right]^{k / 2}+1} & \text { if } k \text { is even, } \\ (t-1)\left[R_{2}\left(K_{t}\right)-1\right]^{k-1) / 2}+1 & \text { if } k \text { is odd } .\end{cases}$
[Fox and Grinshpun, JCTB, 111(2015), 75-125.]
Conjecture 1 is true for $t=3$.
[Chung and Graham, Comb., 3(1983), 315-324.]

Thank you for your attention!

