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1.  Introduction
Gallai Ramsey number
A Gallai k-coloring is 
a k-edge-coloring of a complete graph KN such that  
no triangle has all its edges colored differently.  

Given a graph H and an integer k≥1,  
the Gallai Ramsey number GRk(H) of H  is  
the least positive integer N such that  
every Gallai k-coloring of the complete graph KN  
contains a monochromatic copy of H.



Original definition of k-color Ramsey number

Let Gi be a simple graph of order ni, 1≤i≤k.

The Ramsey number R(G1,G2,…,Gk) is  
the minimum integer N with the following property: 

If the edges of KN are colored by k colors,  
then there exists some i with 1≤i≤k such that KN  has 
a subgraph in color i, which is isomorphic to Gi. 

If  G1=G2=…=Gk=H, we just write 
                       R(G1,G2,…,Gk)=Rk(H). 



Background of Gallai coloring

☞   T. Gallai, Transitiv orientierbare Graphen,  

      Acta Math. Acad. Sci. Hung. 18(1967) 25–66.  

☞   Information theory:  entropy of graphs 

☞   Perfect graph 

☞   Partially ordered sets



Let  Rk(H)  be the k-color classical Ramsey number  
for H, then it is easy to see that  

               GRk(H) ≤ Rk(H) for any graph H.

Theorem 1.  For an integer k≥1 and a graph H with  
no isolated vertices, GRk(H) is exponential in k if H  
is not bipartite, linear in k if H is bipartite but not a  
star, and constant (does not depend on k) when H is  
a star. 
                   [Gyárfás et al., JGT, 64(2010), 233-243.]



If H is a cycle, the by Theorem 1, GRk(C2n) is 
linear in k, and GRk(C2n+1) is exponential in k.

Theorem 2. For all k≥1 and n≥3, 
               (n−1)k+n+1≤GRk(C2n)≤(n−1)k+3n. 
                              [Hall et al., JGT, 75(2014), 59-74]

Theorem 3. For all k≥1 and n≥2, 

               n⋅2k+1≤GRk(C2n+1)≤(nlnn)⋅(2k+3−3). 

                              [Hall et al., JGT, 75(2014), 59-74]

2.  Cycles



Theorem 4. For all k≥2 and n≥2, 

                n⋅2k+1≤GRk(C2n+1)≤(4n+nlnn)⋅2k. 

                                               [Chen et al., submitted]

Theorem 5. For all k≥3 and n≥8, 

           n⋅2k+1≤GRk(C2n+1)≤(nlnn)⋅2k−(k+1)n+1. 

                                              [Bosse et al., submitted]

Except these general bounds for cycles,  some 
exact values of  GRk(C2n) and  GRk(C2n+1)  are 
determined for n is small.



Theorem 7. GRk(C7)=3⋅2k+1. 

          [Bruce and Song, DM, 342(2019) 1191-1194]

Theorem 8. GRk(C9)=4⋅2k+1 and GRk(C11)=5⋅2k+1. 

                                       [Bosse and Song, submitted]

Theorem 9. GRk(C10)=4k+6 and GRk(C12)=5k+7. 
                                                  [Lei et al., submitted]

Theorem 6. GRk(C5)=2⋅2k+1. 

     [Fujita and Magnant, DM, 311(2011) 1247-1254]



Our Results

Theorem 10. For all k≥1 and n≥3, 
                       GRk(C2n)=(n−1)k+n+1. 
                                      [Zhang et al., preprint, 2018]

Theorem 11. For all k≥1 and n≥2, 

                          GRk(C2n+1)=n⋅2k+1. 

                                      [Zhang et al., preprint, 2018]

Let Cm denote a cycle of length m.  
Our main results are as follows.



Low bound for GRk(C2n), where k≥1 and n≥3:  
GRk(C2n)≥(n−1)k+n+1.
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Low bound for GRk(C2n+1), where k≥1 and n≥3:  
GRk(C2n+1)≥n⋅2k+1.

G1 = K2n G2 = G1 G1

Gk = Gk−1 Gk−1…… 



An important structural result of Gallai on Gallai 
colorings of complete graphs: 

Theorem A. For any Gallai coloring c of a complete 
graph G with |G| ≥ 2,    V(G) can be partitioned into 
nonempty sets V1, V2,…,Vp with p>1 so that at most 
two colors are used on the edges in  
                     E(G)\(E(V1) ∪ · · · ∪ E(Vp))  
and only one color is used on the edges between any 
fixed pair (Vi,Vj) under c,    where E(Vi) denotes the 
set of edges in G[Vi] for all i, 1≤i≤p. 
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Sketch of the Proofs of Theorems 10 and 11 
For any Gallai k-colored complete graph G  with  
|G|≥n≥2 and color classes E1,...,Ek, let q(G) denote 
the number of colors i∈{1,2,…,k}  such that  Hi 
with V(Hi)=V(G) and E(Hi)=Ei has a component of 
order at least n. 

Theorem 12. Let G be a Gallai k-colored complete 

graph with |G|≥n≥3.  If |G|≥(n−1)·q(G)+n+1,  then 

G has a monochromatic C2n. 



Suppose G has no monochromatic copy of C2n. 
Choose G with q=q(G) minimum. Assume that for 
each color i ∈{1,2,…,q}, Hi has a component of 
order at least n. 

Let X1,…, Xq be disjoint subsets of V(G) such that 
for each i ∈{1,2,…,q}, Xi (possibly empty) is mc-
complete in color i to V(G)\(X1∪…∪Xq).

Let X=X1∪…∪Xq . 
Choose X1,…, Xq such that  
|X| is as large as possible subject to |X|≤|G|−n.
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3.  Complete Bipartite Graphs

Let Km,n(m≥n) be a complete bipartite graphs. 
By Theorem 1, GRk(Km,n) is linear in k.

It is known that 
          GRk(Km,n)≥(n−1)(k−2)+R2(Km,n).

Conjecture 1.  Let k≥2 and m≥n≥1 be integers.   If 
R2(Km,n)≥3m−2, then 

GRk(Km,n)=(n−1)(k−2)+R2(Km,n). 
                     [Wu et al., DAM, 254(2019),196-203.]



Lower bound for GRk(Km,n) : 
           GRk(Km,n)≥(n−1)(k−2)+R2(Km,n)

KN, N=R2(Km,n)−1
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Theorem 13. For integers k≥2, m≥2 and n≥2, 
GRk(Km,n)≤[R2(Km,n)−1][(m+n−1)2k+2(m+n+1)]. 

                   [Gyárfás et al., JGT, 64(2010), 233-243.]
Theorem 14.  For fixed integers k≥2 and m≥1,  
if n→∞, then 

GRk(Km,n)≤(2n+2n/2+1+k)m+4n3. 
                 [Chen et al., G&C, 34(2018), 1185-1196.]

Theorem 15.  Let R=max{R2(Km,n),3m−2}. Then for  
integers k≥2 and m≥n≥1,   
                  GRk(Km,n)≤(n−1)(k−3)+(n−1)R+1. 
                      [Wu et al., DAM, 254(2019),196-203.]



A uniform k-coloring of  
a complete multipartite graph G=(V1,…,Vt)  
is a k-edge coloring such that   
the edges between any two parts  
receive the same color. 
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Let l≥1 and G1,...,Gk be k graphs. 
The l-uniform Ramsey number Rl(G1,...,Gk) is  
defined as the minimum integer N such that,  
any uniform k-coloring of  
a complete multipartite graph on N vertices  
with each part of cardinality no more than l,  
must contain a monochromatic copy Gi in color i  
for some i.

Rl(G1,...,Gk) is well-defined because 
Rl(G1,…,Gk)≤l·(R(G1,…,Gk)−1)+1.

R1(G1,…,Gk)=R(G1,…,Gk).



In general, 
R(G1,…,Gk)≤Rl(G1,…,Gk)≤l·(R(G1,…,Gk)−1)+1.

Theorem 16.  Let k≥3 and m≥n≥2 be integers. Then 

Remark 1. If each Gi is a complete graph, then 
Rl(G1,…,Gk)=l·(R(G1,…,Gk)−1)+1.

If G1=…=Gk=H, we write

Theorem 1.4 ([12]). For integers k � 2, m � 2 and n � 2,

k + 1 < GRk(Km,n)  (R2(Km,n)� 1)((m+ n� 1)2k + 2(m+ n� 1)).

For complete bipartite graph Km,n where n is su�ciently large, Chen et al. ([2])

provided the following bounds.

Theorem 1.5 ([2]). For fixed integers k � 2 and n � 1, if m ! 1, then

(1� o(1))2nm  GRk(Km,n)  (2n + 2n/2+1 + k)m+ 4n3
.

Recently, general bounds for GRk(Km,n) were improved in [20], where the authors

proved Theorem 1.6 as follows.

Theorem 1.6 ([20]). For integers k � 2 and m � n � 1, let R = max{R2(Km,n), 3m�
2}. Then

(n� 1)(k � 2) +R  GRk(Km,n)  (n� 1)(k � 3 +R) + 1.

They further conjectured thatGRk(Km,n) is equal to the lower bound if R2(Km,n) �
3m� 2, see Conjecture 1.7.

Conjecture 1.7 ([20]). For integers k � 2 and m � n � 1, if R2(Km,n) � 3m � 2,

then

GRk(Km,n) = (n� 1)(k � 2) +R2(Km,n).

We should note that this conjecture includes three parts: One is that the Gallai-

Ramsey numbers of all complete bipartite graphs have a unified linear expression in k.

That is, for a fixed Km,n, GRk(Km,n) can be written as ak + b, where integers a, b are

constants do not depend on k. The second is a = n� 2. The last is b = R2(Km,n). In

this paper, we first partly prove Conjecture 1.7 by verifying the first two parts. That

is showing that the value of GRk(Km,n) can be written as (n� 2)k+ b where integer b

is a constant when Km,n is fixed and whatever k is.

In order to state our result, we need to introduce some definition and notation.

A k-uniform coloring of a complete multipartite graph is a k-edge coloring such that

the edges between any two parts receive the same color. Let ` � 2 and G1,...,Gk be

k graphs. Define R
`(G1, ..., Gk) as the minimum integer N such that, any k-uniform

coloring of a complete multipartite graph on N vertices with each part of cardinality

less than `, must contain a monochromatic copy Gi in color i for some i. Obviously,

R
`(G1, ..., Gk)  (` � 1) · [R(G1, ..., Gk) � 1] + 1 and so R

`(G1, ..., Gk) is well-defined.

By the definition, R2(G1, ..., Gk) = R(G1, ..., Gk) and R
`(G1, ..., Gk) � R(G1, ..., Gk)

for ` � 3. Write R
`
k(H) = R

`(G1, ..., Gk) if Gi = H for 1  i  k.

We are now ready to state our result, see Theorem 1.8.
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[Liu and Chen, Preprint, 2019.]

Theorem 1.8. For integers k � 3 and m � n � 1,

GRk(Km,n) = (n� 1)(k � 2) +R
m�1
2 (Km,n).

The following result turns out to be key in our proof of Theorem 1.8, where the

edge-induced subgraph G[Ei] is the subgraph of G whose edge set is Ei and vertex set

consists of all ends of edges in Ei.

Theorem 1.9. Let k � 3 and m � n � 2 be integers. Let G be a Gallai k-colored

complete graph with edge color classes E1, . . . , Ek. Let q(G) be the number of colors

i 2 [k] such that the edge-induced subgraph G[Ei] has a component of order at least m.

If |G| � (n � 1)(q(G) � 2) + R
m�1
2 (Km,n), then G contains a monochromatic copy of

Km,n.

Theorem 1.8 implies that the degree of di�culty in determining exact values of

GRk(Km,n) for k � 4 is the same as that of GR3(Km,n), since R
m
2 (Km,n) does not

depend on k. Actually, it is a reduction theorem which allows us to just consider a

2-edge-colored structure rather than a k-edge-colored one when we determine the value

of GRk(Km,n). With the help of Theorem 1.8, we then improve the upper bound on

GRk(Km,n) in Theorem 1.6, see Theorem 1.10, and finally prove Gallai-Ramsey results

for certain classes of complete bipartite graphs, see Section 6.

Theorem 1.10. For integers k � 3 and m � n � 2,

(n� 1)(k � 2) +R2(Km,n)  GRk(Km,n)  (n� 1)(k � 2) + 2R2(Km,n) + n� 2.

The reminder of this paper is organized as follows. In Section 2, we list some known

results and prove one helpful lemma which will be used later. Section 3 to 5 contain

proofs of Theorem 1.8 to 1.10. In Section 6, we study Gallai-Ramsey values of several

classes of complete bipartite graphs.

Throughout this note, the following specialized notation will be used. Let c be a k-

edge-coloring of a complete graph G by color 1, . . . , k and A, B be two disjoint subsets

of V (G), if all the edges between A and B are colored by color j 2 [k] under c, then

we will call that A is j-complete to B. If one edge xy is colored by red, then we will

call that x is red-adjacent to y. Moreover, for a vertex x and a vertex set B ✓ V (G),

we use d
r(x), N r(x), drB(x) and N

r
B(x) to denote the numbers and the sets of vertices

red-adjacent to x in V (G) and in B respectively. We use the convention “S :=” to

mean that S is defined as the right-hand side of the relation.

We finally refer to [9, 8, 12, 13, 11] for other results about Gallai-colored complete

graphs and Gallai-Ramsey numbers.
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Theorem 17. For k≥3 and m≥n≥2, 

                                  [Liu and Chen, Preprint, 2019.]

Theorem 18. Let m≥4. If R2(K3,m)≥11m/2−4, then 

                                  [Liu and Chen, Preprint, 2019.]

Theorem 19.  For k≥2,  
GRk(K3,4)=2(k−2)+R2(K3,4). 

                                  [Liu and Chen, Preprint, 2019.]

Obviously, R`(G1, ..., Gk)  ` · (R(G1, ..., Gk)� 1)+ 1 and so the `-uniform Ramsey

number is well-defined for graphs. It is easy to see that R1(G1, ..., Gk) = R(G1, ..., Gk)

and R
`(G1, ..., Gk) � R(G1, ..., Gk) for ` � 2. Clearly, the `-uniform Ramsey number is

a natural generalization of the classical Ramsey number. Write R`
k(H) = R

`(G1, ..., Gk)

if Gi = H for all i 2 [k].

The main results of this paper are as follows.

Theorem 1.6. For integers k � 3 and m � n � 2,

GRk(Km,n) = (n� 1)(k � 2) +R
m�1
2 (Km,n).

Theorem 1.7. For integers k � 3 and m � n � 2,

R
m�1
2 (Km,n)  2R2(Km,n) + n� 2.

Theorem 1.8. For integer m � 2, if R2(K2,m) � 3m� 2, then

R
m�1
2 (K2,m) = R2(K2,m).

Theorem 1.9. For integer m � 4, if R2(K3,m) � 11
2 m� 4, then

R
m�1
2 (K3,m) = R2(K3,m).

Theorem 1.6 gives a linear expression in k for GRk(Km,n) in terms of Rm�1
2 (Km,n).

Actually, it is a reduction theorem which allows us to just consider a 2-edge-colored

structure rather than a k-edge-colored one when we calculate the value of GRk(Km,n).

Combining Theorem 1.6 with Theorems 1.7, 1.8 and 1.9, respectively, we have the

following Corollaries 1.1, 1.2 and 1.3.

Corollary 1.1. For integers k � 3 and m � n � 2,

GRk(Km,n)  (n� 1)(k � 2) + 2R2(Km,n) + n� 2.

Corollary 1.2. For integers k � 3 and m � 2, if R2(K2,m) � 3m� 2, then

GRk(K2,m) = k � 2 +R2(K2,m).

Corollary 1.3. For integers k � 3 and m � 4, if R2(K3,m) � 11
2 m� 4, then

GRk(K3,m) = 2(k � 2) +R2(K3,m).

Noting that R2(K3,4) � R2(K3,3) = 18 [14], taking m = 4 in Theorem 1.9, we can

deduce that R3
2(K3,4) = R2(K3,4). Thus, by Corollary 1.3, we have the following.
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For H being a complete graph Kt,  
Fox and Grinshpun posed the following.

Conjecture 1.  For k≥1 and t≥3, 

GRk(Kt)={[R2(Kt)−1]k/2+1                if k is even,

(t−1)[R2(Kt)−1](k−1)/2+1   if k is odd.

[Fox and Grinshpun, JCTB, 111(2015), 75-125.]

Conjecture 1 is true for t=3.  
     [Chung and Graham, Comb., 3(1983), 315-324.]

4.  Complete Graphs



Thank you for your attention!


