IS EVERY PRIME SUM GRAPH HAMILTONIAN?

陳宏賓 (Hong-Bin Chen) 中興大學應用數學系

2019年圖論與組合數學國際研討會] 第十屆海峽兩岸圖論與組合數學研討會

BERTRAND'S POSTULATE

(Bertrand-Chebyshev Thm.)

For any positive integer n>1 there exists a prime number p between n and 2n

CONSEQUENCE OF BERTRAND'S POSTULATE

1998 proved by L. Greenfield & S. Greenfield

2006 reproduced by D. Galvin "For any positive integer n, { 1, 2, ..., 2n } can be paired such that the sum of each pair is a prime."

D. Galvin, Erdos's proof of Bertrand's postulate, April 2006.

L. Greenfield and S. Greenfield, Some problems of combinatorial number theory related to Bertrand's postulate, J. Integer Seq. 1 (1998), Article 98.1.2.

NEW INSIGHTS

PRIME SUM GRAPH

For any positive number n, define G_n = (V, E) with V={1, 2, ..., n} and E={ ij : i+j is prime}

Greenfield & Greenfield "G_{2n} has a perfect matching."

HUNG-LIN FU

HONG-BIN CHEN

JUN-YI GUO

CONJECTURE

"G_{2n} has a Hamilton cycle"

"that is, for any 2n>2, { 1, 2, ..., 2n } can be rearranged into a cycle so that the sum of every two adjacent numbers is prime"

Douglas B. West's page

Traversal by Prime Sum

Originator(s): ????

Question: Let G_m be the graph with vertex set $\{1, 2, ..., 2m\}$ such that xy is an edge if and only if x+y is prime. Is G_m Hamiltonian when $m \ge 2$?

Comments/Partial results: It is easy to build a Hamiltonian cycle when 2m+1 and 2m+3 are both prime, but it is not even known if G_m is Hamiltonian for infinitely many m.

References: This question was discussed in a thread on the now-defunct mailing list COMB-L.

Index Page; Glossary

Posted 7/11/03

quote from p.105-106

"Antonio Filz (1982) defined a prime circle of order 2m to be a circular permutation of numbers from 1 to 2m with each adjacent pair summing to a prime.

There is essentially only one prime circle for m=1, 2, and 3; two for m=4 and 48 for m=5.

Are there prime circles for all m? "

Richard K. Guy

Unsolved Problems in Number Theory

THIRD EDITION

HOWMEDDD

Bipartite graph Symmetry

SUFFICIENT CONDITION

THEOREM [CFG 2018]

{ 1, 3, 2n+1, 2n+3 }
gcd condition holds directly
at least 3 primes are required

If twin prime conjecture is true

then Filz's conjecture is verified for **infinitely many cases**

DIFFICULTY

Need to prove there are infinitely many prime triples (or quadruples) satisfying certain conditions

BREAKTHROUGH OF TWIN PRIME CONJECTURE 246 600 70M

Yitang Zhang showed in 2013 that we will never stop finding pairs of primes that are within a bounded distance — within 70 million.
 Soon after, dozens of outstanding researchers in the world bring it down to 246.

POLYMATH PROJECT

JAMES MAYNARD

YITANG ZHANG

66 **THANKS TO** BREAKTHROUGH

OUR SUFFICIENT CONDITION

THE 246 BREAKTHROUGH MAIN RESULT

THEOREM [CFG 2018]

"There are infinitely many prime sum graphs that have a Hamilton cycle"

IDEA

ASSUME there exists g with infinitely many prime pairs satisfying p' - p =g. Take g=12 for example. There exist infinitely many (p, p') with p = 12k' + 1 or p = 12k' + 5 or

p = 12k' + 7 or p = 12k' + 11

MATCH prime pairs to gcd condition

Form	(p_1, p_2)	gcd condition
p = 12k' + 1	(11, 23)	$\gcd(6, 6k+1) = 1$
p = 12k' + 5	(7,19)	$\gcd(6, 6k+5) = 1$
p = 12k' + 7	(5,17)	$\gcd(6, 6k+1) = 1$
p = 12k' + 11	(1,13)	$\gcd(6, 6k+5) = 1$

CHECK these steps for g=2, 4, ..., 246

There are total 6170 cases and this can be done by computers.

RELEVANT.

Dirac-Ore Type Condition

Prime Sum Graphs

Random Graphs

ØYSTEIN ORE (1899 - 1968)

LAJOS POSA

Dirac-Ore Type Condition

Graphs with min. degree n/2 (with degree sum of 2 nonadj. vertices at least n) have a Hamilton cycle

Prime sum graph has vertex degree n/log n << n/2

Posa's THM. 1976

The probability

a random graph with n vertices and cnlog n edges for sufficiently large c contains a Hamilton cycle tends to 1 as n tends to infinity

Prime sum graph has O(n^2/log n) >> O(nlog n) edges Primes long thought to distribute 'RANDOMLY' in a sense

99999970	13	31	99999989	10000001
99999978	11	61	99999989	10000039
99999980	59	101	10000039	10000081
99999982	7	67	99999989	10000049
99999984	5	139	99999989	100000123
999999986		53	99999989	10000039
999999268		61	10000007	10000049
9999999990	17	223	10000007	100000213
9919797		0%		10000081
99 9 9	$\mathbf{y}_{\mathbf{y}}$	4		10000037
99999996	11	241	10000007	100000237
99999998	41	233	10000039	100000231
10000000	7	73	10000007	10000073

There are infinitely many prime sum graphs that are Hamiltonian

The sufficient condition is always true?

If so then we generalize Bertrand's postulate for even case

CONTRIBUTION

CONJECTURE

CHALLENGE

Generalized Bertrand's postulate?

" for each 2n, there is p with 2n < 2n+p < 4n such that p and 2n+p are prime "

Goldbach's Conjecture

2n = p + p

Best result by J.R. Chen 2n = p + pp

Generalized Bertrand's postulate 2n< 2n+p <4n

Implies 2n = p - p, variant of Goldbach's conj. Best result 2n = p - pp by J.R. Chen 66 **Every** prime sum graph of order 2n>2 is Hamiltonian

Who's Conjecture

Prime pyramids

Similarly, Margaret Kenney (1986) and Richard Guy (1993) studied the prime pyramid in which row n contains numbers 1, 2, ..., n, begins with 1, ends with n, and each adjacent pair summing to a prime.

Open Question: Prove it for infinitely many n.

Erdős asked

Are there infinitely many primes p such that every even number <p-2 can be expressed as the difference between two primes each no more than p?

Example of p=13 10=13-3 8=11-3 6=11-5 4=7-3 2=5-3

THANK YOU for your time!

HONG-BIN CHEN HUNG-LIN FU JUN-YI GUO