IS EVERY PRIME SUM GRAPH HAMILTONIAN？

陳宏賓（Hong－Bin Chen）
中興大學應用數學系

outine

BERTRAND'S POSTULATE

(Bertrand-Chebyshev Thm.)

For any positive integer $n>1$ there exists a prime number p between n and $2 n$

CONSEQUENCE OF BERTRAND'S POSTULATE

1998 proved by
L. Greenfield \& S. Greenfield
2006 reproduced by
D. Golvin

"For any positive integer n , $\{1,2, \ldots, 2 n\}$ con be paired such that the sum of each pair is a prime."
D. Galvin, Erdos's proof of Bertrand's postulate, April 2006.
L. Greenfield and S. Greenfield, Some problems of combinatorial number theory related to Bertrand's postulate, J. Integer Seq. 1 (1998), Article 98.1.2.

NEW INSIGHTS

PRIME SUM GRAPH

For any positive number n , define $\mathbf{G}_{\mathbf{n}}=(\mathbf{V}, \mathbf{E})$ with $\mathrm{V}=\{1,2, \ldots, \mathrm{n}\}$ and $E=\{i j: i+j$ is prime $\}$

Greenfield \& Greenfield " $\mathrm{G}_{2 \mathrm{n}}$ has a perfect matching."

HUNG-LIN FU

HONG-BIN CHEN

CONJECTURE

" $\mathbf{G}_{2 n}$ has a Hamilton cycle"

"that is,
for any $2 \mathrm{n}>2,\{1,2, \ldots, 2 \mathrm{n}\}$ can
be rearranged into a cycle so that the sum of every two adjacent numbers is prime"

Douglas B. West's page

Traversal by Prime Sum

Originator(s): ????
Question: Let G_{m} be the graph with vertex set $\{1,2, \ldots, 2 m\}$ such that $x y$ is an edge if and only if $x+y$ is prime. Is G_{m} Hamiltonian when $m>=2$?
Comments/Partial results: It is easy to build a Hamiltonian cycle when $2 m+1$ and $2 m+3$ are both prime, but it is not even known if G_{m} is Hamiltonian for infinitely many m.

References: This question was discussed in a thread on the now-defunct mailing list COMB-L.

quote from p.105-106

"Antonio Filz (1982) defined a prime circle of order $2 m$ to be a circular permutation of numbers from 1 to $2 m$ with each adjacent pair summing to a prime.

There is essentially only one prime circle for $m=1,2$, and 3 ; two for $m=4$ and 48 for $m=5$.

Are there prime circles for all m? "

Richard K. Guy

Unsolved Problems in Number Theory

THIRD EDITION

[^0]

sum of adjacent numbers = prime

HOW WE DID

Observation

Bipartite graph
Symmetry

Edges sum to 23

SUFFICIENT CONDITION

THEOREM [CFG 2018]

IF
 $\{p, q, 2 n+p, 2 n+q\}$ are primes $\operatorname{gcd}((q-p) / 2, n)=1 \quad$ (p can be 1)
 THEN
 $\mathbf{G}_{2 n}$ has a Hamilton cycle

primes

01

$\{1,3,2 n+1,2 n+3\}$ gcd condition holds directly at least 3 primes are required

If twin prime conjecture is true
then Filz's conjecture is verified for infinitely many cases

DIFFICULTY

Need to prove there are infinitely many prime triples (or quadruples) satisfying certain conditions

BREAKTHROUGH OF TWIN PRIME CONJECTURE

246 600

Yitang Zhang showed in 2013 that we will never stop finding pairs of primes that are within a bounded distance - within 70 million.
Soon after, dozens of outstanding researchers in the world bring it down to 246.

66
 THANKS TO BREAKTHROUGH 99

OUR
SUFFICIENT CONDIIION
THE 246 BREAKTHROUGH

THEOREM [CFG 2018]

"There are infinitely many prime sum graphs that have a Hamilton cycle"

ASSUME there exists g with infinitely many prime pairs satisfying $p^{\prime}-p=g$.

Take $\mathrm{g}=12$ for example.
There exist infinitely many (p, p^{\prime}) with

$$
\begin{aligned}
& p=12 k^{\prime}+1 \text { or } p=12 k^{\prime}+5 \text { or } \\
& p=12 k^{\prime}+7 \text { or } p=12 k^{\prime}+11
\end{aligned}
$$

MATCH prime pairs to gcd condition

Form	$\left(p_{1}, p_{2}\right)$	gcd condition
$p=12 k^{\prime}+1$	$(11,23)$	$\operatorname{gcd}(6,6 k+1)=1$
$p=12 k^{\prime}+5$	$(7,19)$	$\operatorname{gcd}(6,6 k+5)=1$
$p=12 k^{\prime}+7$	$(5,17)$	$\operatorname{gcd}(6,6 k+1)=1$
$p=12 k^{\prime}+11$	$(1,13)$	$\operatorname{gcd}(6,6 k+5)=1$

CHECK these steps for $\mathrm{g}=2,4, \ldots, 246$

There are total 6170 cases and this can be done by computers.

Dirac-Ore Type Condition

Prime Sum Graphs

Random Graphs

LAJOS POSA

Dirac-Ore Type Condition

Graphs
with min. degree $n / 2$ (with degree sum of 2 nonadj. vertices at least n) have a Hamilton cycle

Prime sum graph has vertex degree $n / \log n \ll n / 2$

The probability a random graph with n vertices and cnlog n edges for sufficiently large c contains a Hamilton cycle tends to 1 as n tends to infinity

Prime sum graph has $O\left(n^{\wedge} 2 / \log n\right) \gg O(n \log n)$ edges
Primes long thought to distribute 'RANDOMLY' in a sense

99999978	11	61	99999989	100000039
99999980	59	101	100000039	100000081
99999982	7	67	99999989	100000049
		61	100000007	100000049
		223	100000007	100000213
				100000081
				100000037
99999996	11	24	100000007	100000237
99999998	41	233	100000039	100000231
100000000	7	73	100000007	100000073

CONTRIBUTION

There are infinitely many
prime sum graphs
that are Hamiltonian
CONJECTURE
The sufficient condition is
always true?
If so
then we generalize Bertrand's postulate for even case

CHALLENGE

Generalized Bertrand's postulate?
$"$ for each $2 n$, there is p with $2 n<2 n+p<4 n$
such that p and $2 n+p$ are prime "

Goldbach's Conjecture

$2 n=p+p$

Best result by J.R. Chen
$2 n=p+p p$

Generalized Bertrand's postulate $\mathbf{2 n}<\mathbf{2 n + p}<\mathbf{4 n}$

Implies $2 n=p-p$, variant of Goldbach's conj.
Best result $2 n=p-p p$ by J.R. Chen

Every prime sum graph of order $2 n>2$ is Hamiltonian

Who's Conjecture

Prime pyramids

Similarly, Margaret Kenney (1986) and Richard Guy (1993) studied the prime pyramid in which row n contains numbers $1,2, \ldots, n$, begins with 1 , ends with n, and each adjacent pair summing to a prime.

Open Question:
Prove it for infinitely many n.

Erdős asked

Are there infinitely many primes p such that every even number <p-2 can be expressed as the difference between two primes each no more than p?

Example of $\mathrm{p}=13$
$10=13-3$
$8=11-3$
$6=11-5$
$4=7-3$
$2=5-3$

THANK YOU for your time!

(2)

HONG-BIN CHEN HUNG-LIN FU
JUN-YI GUO

[^0]: Springer

