$$
\begin{aligned}
& \therefore \text { "1, Partitioning complete } \\
& \text { graphs into } \\
& \text { monochromatic paths }
\end{aligned}
$$

Basic Notations

History

Known result

The edges within the sets $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$, and X_{4} can be coloured arbitrarily.

J. Combin. Theory Ser. B 106 (2014), 70-97.

Main result

Main result

Theorem B. Suppose that the edges of Kn are coloured with three colours such that the colouring is not 4 -partite. Then Kn contains a simple Hamiltonian path.

Main result

Theorem B. Suppose that the edges of Kn are coloured with three colours such that the colouring is not 4-partite. Then Kn contains a simple Hamiltonian path.

Theorem A. Suppose that the edges of Kn are coloured with three colours such that the colouring is not 4-partite. Then Kn can be vertex-partitioned into three monochromatic paths with different colours.

