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Introduction
Combinatorial Tools

Main Results

We use [n] to denote the set {1, 2, . . . , n} of n integers.

Denote
([n]
k

)
as the collection of all k-subsets of [n].

For positive integers n, k and r , a k-subset S ⊆ [n] is r -stable
if |S | = k and any two of its elements are at least ”at distance
r apart” on the n-cycle, that is, if r ≤ |i − j | ≤ n − r for

distinct i , j ∈ S . We denote by
([n]
k

)
r -stab

the collection of all
r -stable k-subsets.
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Main Results

The r -uniform Kneser hypergraph KGr (n, k) is an r -uniform

hypergraph which has
([n]
k

)
as vertex set and whose edges are

formed by the r -tuples of disjoint k-subsets of [n].

Choosing r = 2, we obtain the ordinary Kneser graph
KG2(n, k) = KG (n, k).
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Main Results

The Kneser conjecture (1955):
Let n and k be two positive integers with n ≥ 2k ≥ 2. Then

χ(KG (n, k)) = n − 2k + 2.

The Kneser conjecture (1955) was proved by Lovász (1978)
using the Borsuk-Ulam theorem; all subsequent proofs,
extensions and generalizations also relied on Algebraic
Topology results.

Matoušek (2004) provided the first combinatorial proof of
the Kneser conjecture via Tucker’s lemma (1942).
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The r -uniform r -stable Kneser hypergraph KGr (n, k)r -stab is

an r -uniform hypergraph which has
([n]
k

)
r -stab

as vertex set
and whose edges are formed by the r -tuples of disjoint
r -stable k-subsets of [n].

Choosing r = 2, we obtain the usual r -stable Kneser graph.
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Schrijver’s theorem (1978):
Let n and k be two positive integers with n ≥ 2k ≥ 4. Then

χ(KG2(n, k)2-stab) = n − 2k + 2 = χ(KG (n, k)).
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Erdős (1976), Alon, Frankl and Lovász (1986)

The Erdős conjecture (1976):
For n ≥ rk and r ≥ 2,

χ (KGr (n, k)) =

⌈
n − r(k − 1)

r − 1

⌉
.

The conjecture settled by Alon, Frankl and Lovász (1986).
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Zp-Tucker Lemma, Ziegler (2002)

Lemma

Let p be a prime, n, m ≥ 1, and let

λ : (Zp ∩ {0})n \{0}n −→ Zp × [m]
X 7−→ (λ1(X ), λ2(X ))

be a Zp-equivariant map.
If (p − 1)m < n, then there exist X (1) ⊂ X (2) ⊂ . . . ⊂ X (p) such
that λ2(X (1)) = λ2(X (2)) = . . . = λ2(X (p)), but with distinct
signed λ1(X (i)) ∈ Zp.
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The Ziegler conjecture (2002)

The Ziegler conjecture (2002) for r-uniform r-stable
Kneser hypergraph KGr (n, k)r-stab:
For n ≥ rk, r ≥ 2, and k ≥ 2,

χ (KGr (n, k)r -stab) =

⌈
n − r(k − 1)

r − 1

⌉
= χ (KGr (n, k)) .
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Alon, Drewnowski and  Luczak (2009)

Alon, Drewnowski and  Luczak (2009) settled the Ziegler
conjecture in the particular case that r = 2q for arbitrary
positive integer q.
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Sani and Alishahi (2018)

Let n, k and r be positive integers with k , r ≥ 2, and n ≥ rk.
For a set A ( [n], define KGr (n, k ,A) to be a hypergraph
whose vertices are k-element subsets e ⊂ [n] with e * A , and
whose hyperedges consists of r such sets that are pairwise
disjoint.

KGr (n, k ,A) is the subhypergraph of KGr (n, k).
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Main Results

Sani and Alishahi (2018)

Sani and Alishahi (2018) conjectured:
Let n, k and r be positive integers with k , r ≥ 2, and n ≥ rk.
For a set A ( [n],

χ (KGr (n, k,A)) =

⌈
n −max (r(k − 1), |A|)

r − 1

⌉
.

Sani and Alishahi showed that the conjecture holds when
|A| ≤ 2(k − 1) or |A| ≥ rk − 1, so the open case left is when
2k − 1 ≤ |A| ≤ rk − 2.
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Frick et al. (2019)

Let P = {P1, ...,P`} be a partition of [n]; denote by
KGr (n, k ;P) (or by KGr (n, k ,P1, ...,P`)) the hypergraph
whose vertices are k-element subsets e ⊂ [n] with |e ∩ Pi | ≤ 1
for all i ∈ [`], and whose hyperedges consists of r such sets
that are pairwise disjoint.

KGr (n, k ;P) is a subhypergraph of KGr (n, k ,A) with
A ⊆ P1 ∪ · · · ∪ Pk−1.
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Frick et al. (2019)

Theorem

Let r ≥ 2, k ≥ 1, and n ≥ rk be integers. Let P = {P1, ...,P`} be
a partition of [n] with |Pi | ≤ r − 1. Then

χ (KGr (n, k ;P)) =

⌈
n − r(k − 1)

r − 1

⌉
.

Frick et al. (2019) proved some partial results of the
Sani-Alishahi conjecture.
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Chen (2019)

We obtain the following result via Zp-Tucker lemma.

Theorem

Let n, k and r be positive integers with k, r ≥ 2, and n ≥ rk. For a
set A ( [n],

χ (KGr (n, k ,A))) =

⌈
n −max (r(k − 1), |A|)

r − 1

⌉
.
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We obtain the following result via Zp-Tucker lemma.

Theorem

Let r ≥ 2, k ≥ 1, and n ≥ rk be integers. Let P = {P1, ...,P`} be
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The Ziegler conjecture (2002)

KGr (n, k)r -stab is a subhypergraph of KGr (n, k ;P) after
possibly reordering [n] to make each part Pi consist of
consecutive elements.

The Ziegler conjecture is still open.
For n ≥ rk, r ≥ 2, and k ≥ 2,

χ (KGr (n, k)r -stab) =

⌈
n − r(k − 1)

r − 1

⌉
= χ (KGr (n, k)) .
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Hamid Reza Daneshpajouh (2019)

Let n, k , r , s be non-negative integers where
n ≥ r(k − 1) + 1, k > s ≥ 0 and r ≥ 2. Define KGr (n, k , s) to
be a hypergraph whose vertices are k-element subsets e ⊂ [n]
and edge set E (KGr (n, k , s)) ={
{e1, . . . , er} : ei ∈

([n]
k

)
and |ei ∩ ej | ≤ s for all i 6= j

}

KGr (n, k , 0) is the Kneser hypergraph KGr (n, k).
KG2(n, k, k − 1) is the complete graph K(nk)

.

The chromatic number of KGr (n, k , s) were studied by Frankl
and Füredi (1985, 1986) for fixed k and s.
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Hamid Reza Daneshpajouh (2019)

Daneshpajouh obtains the following result via Zp-Tucker
lemma.

Theorem

Let n, k , r , s be non-negative integers where
n ≥ r(k − 1) + 1, k > s ≥ 0 and r ≥ 2,

χ (KGr (n, k, s)) ≥
⌈
n − r(k − s − 1)

r − 1

⌉
.

χ
(
KG2(n, k, k − 1)

)
=
(n
k

)
.
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Hamid Reza Daneshpajouh (2019)

Let n, k , r be non-negative integers where n ≥ r(k − 1) + 1
and r ≥ 2,

χ (KGr (n, k)) = χ (KGr (n, k , 0)) ≥
⌈
n − r(k − 1)

r − 1

⌉
.

It is of interest to know when the inequality obtained by
Daneshpajouh is sharp.
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