On the generalized Alon-Frankl-Lovász theorem

Peng-An Chen
Department of Applied Mathematics
Taitung University

August 19, 2019

Outline

(1) Introduction

(2) Main Results

- We use $[n]$ to denote the set $\{1,2, \ldots, n\}$ of n integers.
- Denote $\binom{[n]}{k}$ as the collection of all k-subsets of $[n]$.
- We use $[n]$ to denote the set $\{1,2, \ldots, n\}$ of n integers.
- Denote $\binom{[n]}{k}$ as the collection of all k-subsets of $[n]$.
- For positive integers n, k and r, a k-subset $S \subseteq[n]$ is r-stable if $|S|=k$ and any two of its elements are at least "at distance r apart" on the n-cycle, that is, if $r \leq|i-j| \leq n-r$ for distinct $i, j \in S$. We denote by $\binom{[n]}{k}_{r \text {-stab }}$ the collection of all r-stable k-subsets.

$\{1,3\}$ is 22 -stadble subsete of $[5]$.
- The r-uniform Kneser hypergraph $\mathrm{KG}^{r}(n, k)$ is an r-uniform hypergraph which has $\binom{[n]}{k}$ as vertex set and whose edges are formed by the r-tuples of disjoint k-subsets of $[n]$.
- Choosing $r=2$, we obtain the ordinary Kneser graph $\mathrm{KG}^{2}(n, k)=\mathrm{KG}(n, k)$.

- The Kneser conjecture (1955):

Let n and k be two positive integers with $n \geq 2 k \geq 2$. Then

$$
\chi(\mathrm{KG}(n, k))=n-2 k+2 .
$$

- The Kneser conjecture (1955):

Let n and k be two positive integers with $n \geq 2 k \geq 2$. Then

$$
\chi(\mathrm{KG}(n, k))=n-2 k+2 .
$$

- The Kneser conjecture (1955) was proved by Lovász (1978) using the Borsuk-Ulam theorem; all subsequent proofs, extensions and generalizations also relied on Algebraic Topology results.
- The Kneser conjecture (1955):

Let n and k be two positive integers with $n \geq 2 k \geq 2$. Then

$$
\chi(\mathrm{KG}(n, k))=n-2 k+2 .
$$

- The Kneser conjecture (1955) was proved by Lovász (1978) using the Borsuk-Ulam theorem; all subsequent proofs, extensions and generalizations also relied on Algebraic Topology results.
- Matoušek (2004) provided the first combinatorial proof of the Kneser conjecture via Tucker's lemma (1942).
- The r-uniform r-stable Kneser hypergraph $\mathrm{KG}^{r}(n, k)_{r \text {-stab }}$ is an r-uniform hypergraph which has $\binom{[n]}{k}_{r \text {-stab }}$ as vertex set and whose edges are formed by the r-tuples of disjoint r-stable k-subsets of $[n]$.

$$
\operatorname{Kc}^{2}(5,2)=\operatorname{KC}(5,2)
$$

- Schrijver's theorem (1978):

Let n and k be two positive integers with $n \geq 2 k \geq 4$. Then

$$
\chi\left(\operatorname{KG}^{2}(n, k)_{2-s t a b}\right)=n-2 k+2=\chi(K G(n, k)) .
$$

Outline

(1) Introduction

(2) Main Results

Erdős (1976), Alon, Frankl and Lovász (1986)

- The Erdős conjecture (1976):

For $n \geq r k$ and $r \geq 2$,

$$
\chi\left(\mathrm{KG}^{r}(n, k)\right)=\left\lceil\frac{n-r(k-1)}{r-1}\right\rceil .
$$

Erdős (1976), Alon, Frankl and Lovász (1986)

- The Erdös conjecture (1976):

For $n \geq r k$ and $r \geq 2$,

$$
\chi\left(\mathrm{KG}^{r}(n, k)\right)=\left\lceil\frac{n-r(k-1)}{r-1}\right\rceil .
$$

- The conjecture settled by Alon, Frankl and Lovász (1986).

Z_{p}-Tucker Lemma, Ziegler (2002)

Lemma

Let p be a prime, $n, m \geq 1$, and let

$$
\begin{array}{rll}
\lambda:\left(Z_{p} \cap\{0\}\right)^{n} \backslash\{0\}^{n} & \longrightarrow & Z_{p} \times[m] \\
X & \longmapsto & \left(\lambda_{1}(X), \lambda_{2}(X)\right)
\end{array}
$$

be a Z_{p}-equivariant map.
If $(p-1) m<n$, then there exist $X^{(1)} \subset X^{(2)} \subset \ldots \subset X^{(p)}$ such that $\lambda_{2}\left(X^{(1)}\right)=\lambda_{2}\left(X^{(2)}\right)=\ldots=\lambda_{2}\left(X^{(p)}\right)$, but with distinct signed $\lambda_{1}\left(X^{(i)}\right) \in Z_{p}$.

The Ziegler conjecture (2002)

- The Ziegler conjecture (2002) for r-uniform r-stable Kneser hypergraph $\mathbf{K G}^{r}(n, k)_{r-s t a b}$: For $n \geq r k, r \geq 2$, and $k \geq 2$,

$$
\chi\left(\mathrm{KG}^{r}(n, k)_{r-s t a b}\right)=\left\lceil\frac{n-r(k-1)}{r-1}\right\rceil=\chi\left(\mathrm{KG}^{r}(n, k)\right) .
$$

Alon, Drewnowski and Łuczak (2009)

- Alon, Drewnowski and Łuczak (2009) settled the Ziegler conjecture in the particular case that $r=2^{q}$ for arbitrary positive integer q.

Sani and Alishahi (2018)

- Let n, k and r be positive integers with $k, r \geq 2$, and $n \geq r k$. For a set $A \subsetneq[n]$, define $\mathrm{KG}^{r}(n, k, A)$ to be a hypergraph whose vertices are k-element subsets $e \subset[n]$ with $e \nsubseteq A$, and whose hyperedges consists of r such sets that are pairwise disjoint.
- $\mathrm{KG}^{r}(n, k, A)$ is the subhypergraph of $\mathrm{KG}^{r}(n, k)$.

[iv)

1110
$\begin{array}{lll}9 & 8 & 7\end{array}$
$6 \quad 5 \quad 4$
312

[11]
 1110 $\begin{array}{lll}9 & 8 & 7\end{array}$ $6 \quad 5 \quad 4$ A 312

$$
n=11, r=2, k=3 \operatorname{andn} n \geq r k
$$

The hpperedsee : $\{5,8,111,\{4,10\}$

Sani and Alishahi (2018)

- Sani and Alishahi (2018) conjectured:

Let n, k and r be positive integers with $k, r \geq 2$, and $n \geq r k$. For a set $A \subsetneq[n]$,

$$
\chi\left(\operatorname{KG}^{r}(n, k, A)\right)=\left\lceil\frac{n-\max (r(k-1),|A|)}{r-1}\right\rceil .
$$

- Sani and Alishahi showed that the conjecture holds when $|A| \leq 2(k-1)$ or $|A| \geq r k-1$, so the open case left is when $2 k-1 \leq|A| \leq r k-2$.

Frick et al. (2019)

- Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{\ell}\right\}$ be a partition of [n]; denote by $\mathrm{KG}^{r}(n, k ; \mathcal{P})$ (or by $\mathrm{KG}^{r}\left(n, k, P_{1}, \ldots, P_{\ell}\right)$) the hypergraph whose vertices are k-element subsets $e \subset[n]$ with $\left|e \cap P_{i}\right| \leq 1$ for all $i \in[\ell]$, and whose hyperedges consists of r such sets that are pairwise disjoint.
- $\mathrm{KG}^{r}(n, k ; \mathcal{P})$ is a subhypergraph of $\mathrm{KG}^{r}(n, k, A)$ with $A \subseteq P_{1} \cup \cdots \cup P_{k-1}$.

[iv)

1110
$\begin{array}{lll}9 & 8 & 7\end{array}$
$6 \quad 5 \quad 4$
312

$$
\begin{aligned}
& P_{4} \rightarrow \quad 1110 \\
& P_{3}+\begin{array}{|ccc|}
\hline 9 & 8 & 7
\end{array} \\
& P_{2}+654 \\
& p_{1}+3 \quad 2 \quad 1
\end{aligned}
$$

$$
n=11, r=2, k=3 a n d n \geq 2 k
$$

Blue

The hyperedge $e=\{\{3,6,8\},\{4,7,10\}\}$

Frick et al. (2019)

Theorem

Let $r \geq 2, k \geq 1$, and $n \geq r k$ be integers. Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{\ell}\right\}$ be a partition of $[n]$ with $\left|P_{i}\right| \leq r-1$. Then

$$
\chi\left(K G^{r}(n, k ; \mathcal{P})\right)=\left\lceil\frac{n-r(k-1)}{r-1}\right\rceil .
$$

Frick et al. (2019)

Theorem

Let $r \geq 2, k \geq 1$, and $n \geq r k$ be integers. Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{\ell}\right\}$ be a partition of $[n]$ with $\left|P_{i}\right| \leq r-1$. Then

$$
\chi\left(K G^{r}(n, k ; \mathcal{P})\right)=\left\lceil\frac{n-r(k-1)}{r-1}\right\rceil .
$$

- Frick et al. (2019) proved some partial results of the Sani-Alishahi conjecture.

Frick et al. (2019)

- Frick et al. (2019) conjectured:

Let $r \geq 2, k \geq 1$, and $n \geq r k$ be integers. Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{\ell}\right\}$ be a partition of $[n]$ with $\left|P_{i}\right| \leq r$. Then

$$
\chi\left(\mathrm{KG}^{r}(n, k ; \mathcal{P})\right)=\left\lceil\frac{n-r(k-1)}{r-1}\right\rceil .
$$

Chen (2019)

- We obtain the following result via Z_{p}-Tucker lemma.

Theorem

Let n, k and r be positive integers with $k, r \geq 2$, and $n \geq r k$. For a set $A \subsetneq[n]$,

$$
\left.\chi\left(K G^{r}(n, k, A)\right)\right)=\left\lceil\frac{n-\max (r(k-1),|A|)}{r-1}\right\rceil \text {. }
$$

Chen (2019)

- We obtain the following result via Z_{p}-Tucker lemma.

Theorem

Let $r \geq 2, k \geq 1$, and $n \geq r k$ be integers. Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{\ell}\right\}$ be a partition of $[n]$ with $\left|P_{i}\right| \leq r$. Then

$$
\chi\left(K G^{r}(n, k ; \mathcal{P})\right)=\left\lceil\frac{n-r(k-1)}{r-1}\right\rceil .
$$

The Ziegler conjecture (2002)

- $\mathrm{KG}^{r}(n, k)_{r \text {-stab }}$ is a subhypergraph of $\mathrm{KG}^{r}(n, k ; \mathcal{P})$ after possibly reordering [n] to make each part P_{i} consist of consecutive elements.
- The Ziegler conjecture is still open.

For $n \geq r k, r \geq 2$, and $k \geq 2$,

$$
\chi\left(\mathrm{KG}^{r}(n, k)_{r-s t a b}\right)=\left\lceil\frac{n-r(k-1)}{r-1}\right\rceil=\chi\left(\mathrm{KG}^{r}(n, k)\right) .
$$

$$
\begin{aligned}
& P_{4} \rightarrow \quad 1110 \\
& P_{3}+\begin{array}{|ccc|}
\hline 9 & 8 & 7
\end{array} \\
& P_{2}+654 \\
& p_{1}+3 \quad 2 \quad 1
\end{aligned}
$$

$$
P=\left[p_{1}, R_{3}, R_{3}, 4 / j \text { isheparationon }[[11]\right.
$$

Hamid Reza Daneshpajouh (2019)

- Let n, k, r, s be non-negative integers where $n \geq r(k-1)+1, k>s \geq 0$ and $r \geq 2$. Define $\operatorname{KG}^{r}(n, k, s)$ to be a hypergraph whose vertices are k-element subsets $e \subset[n]$ and edge set $E\left(\mathrm{KG}^{r}(n, k, s)\right)=$

$$
\left\{\left\{e_{1}, \ldots, e_{r}\right\}: e_{i} \in\binom{[n]}{k} \text { and }\left|e_{i} \cap e_{j}\right| \leq s \text { for all } i \neq j\right\}
$$

Hamid Reza Daneshpajouh (2019)

- Let n, k, r, s be non-negative integers where $n \geq r(k-1)+1, k>s \geq 0$ and $r \geq 2$. Define $\operatorname{KG}^{r}(n, k, s)$ to be a hypergraph whose vertices are k-element subsets $e \subset[n]$ and edge set $E\left(\mathrm{KG}^{r}(n, k, s)\right)=$
$\left\{\left\{e_{1}, \ldots, e_{r}\right\}: e_{i} \in\binom{[n]}{k}\right.$ and $\left|e_{i} \cap e_{j}\right| \leq s$ for all $\left.i \neq j\right\}$
- $\mathrm{KG}^{r}(n, k, 0)$ is the Kneser hypergraph $\mathrm{KG}^{r}(n, k)$.
- $\mathrm{KG}^{2}(n, k, k-1)$ is the complete graph $\mathrm{K}_{\binom{n}{k}}$.

Hamid Reza Daneshpajouh (2019)

- Let n, k, r, s be non-negative integers where $n \geq r(k-1)+1, k>s \geq 0$ and $r \geq 2$. Define $\operatorname{KG}^{r}(n, k, s)$ to be a hypergraph whose vertices are k-element subsets $e \subset[n]$ and edge set $E\left(\mathrm{KG}^{r}(n, k, s)\right)=$
$\left\{\left\{e_{1}, \ldots, e_{r}\right\}: e_{i} \in\binom{[n]}{k}\right.$ and $\left|e_{i} \cap e_{j}\right| \leq s$ for all $\left.i \neq j\right\}$
- $\mathrm{KG}^{r}(n, k, 0)$ is the Kneser hypergraph $\mathrm{KG}^{r}(n, k)$.
- $\mathrm{KG}^{2}(n, k, k-1)$ is the complete graph $\mathrm{K}_{\binom{n}{k}}$.
- The chromatic number of $\operatorname{KG}^{r}(n, k, s)$ were studied by Frankl and Füredi $(1985,1986)$ for fixed k and s.

Hamid Reza Daneshpajouh (2019)

- Daneshpajouh obtains the following result via Z_{p}-Tucker lemma.

Theorem

Let n, k, r, s be non-negative integers where $n \geq r(k-1)+1, k>s \geq 0$ and $r \geq 2$,

$$
\chi\left(K G^{r}(n, k, s)\right) \geq\left\lceil\frac{n-r(k-s-1)}{r-1}\right\rceil \text {. }
$$

Hamid Reza Daneshpajouh (2019)

- Daneshpajouh obtains the following result via Z_{p}-Tucker lemma.

Theorem

Let n, k, r, s be non-negative integers where

$$
n \geq r(k-1)+1, k>s \geq 0 \text { and } r \geq 2
$$

$$
\chi\left(K G^{r}(n, k, s)\right) \geq\left\lceil\frac{n-r(k-s-1)}{r-1}\right\rceil \text {. }
$$

- $\chi\left(\mathrm{KG}^{2}(n, k, k-1)\right)=\binom{n}{k}$.

Hamid Reza Daneshpajouh (2019)

- Let n, k, r be non-negative integers where $n \geq r(k-1)+1$ and $r \geq 2$,

$$
\chi\left(\operatorname{KG}^{r}(n, k)\right)=\chi\left(\operatorname{KG}^{r}(n, k, 0)\right) \geq\left\lceil\frac{n-r(k-1)}{r-1}\right\rceil
$$

Hamid Reza Daneshpajouh (2019)

- Let n, k, r be non-negative integers where $n \geq r(k-1)+1$ and $r \geq 2$,

$$
\chi\left(\operatorname{KG}^{r}(n, k)\right)=\chi\left(\mathrm{KG}^{r}(n, k, 0)\right) \geq\left\lceil\frac{n-r(k-1)}{r-1}\right\rceil .
$$

- It is of interest to know when the inequality obtained by Daneshpajouh is sharp.
\cos

Thank you for your attention!!!

