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Disjoint cycles in digraphs
L_1. Notation

1. Notation
m A graph G = (V, E): V vertex set, E edge set.
Let n be the order of G for simplicity, i.e. n = |V|.
d(G): the minimum degree of G.
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L_1. Notation

1. Notation
m A graph G = (V, E): V vertex set, E edge set.
Let n be the order of G for simplicity, i.e. n = |V|.
d(G): the minimum degree of G.

= A digraph D = (V, A): V vertex set, A arc set.
51 (D): the minimum out-degree,

0~ (D): the minimum in-degree of D.
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Disjoint cycles in digraphs
L_1. Notation

1. Notation
m A graph G = (V, E): V vertex set, E edge set.
Let n be the order of G for simplicity, i.e. n = |V|.
d(G): the minimum degree of G.

= A digraph D = (V, A): V vertex set, A arc set.
51 (D): the minimum out-degree,

0~ (D): the minimum in-degree of D.
= The semi-degree of D is §°(D) = min{6* (D), (D)}.
m In a digraph: a cycle is always directed.
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Disjoint cycles in digraphs
L_1. Notation

= A tournament is a digraph 7" such that for any two distinct
vertices = and y, exactly one of the ordered pairs (z,y) and
(y,x) is an arc of T
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Disjoint cycles in digraphs
L_1. Notation

= A tournament is a digraph 7" such that for any two distinct
vertices = and y, exactly one of the ordered pairs (z,y) and
(y,x) is an arc of T

m A set of subgraphs of G or D is said to be vertex-disjoint(
briefly disjoint ) if no two of them have any common vertex in
Gor D.
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Disjoint cycles in digraphs
L_1. Notation

= A tournament is a digraph 7" such that for any two distinct
vertices = and y, exactly one of the ordered pairs (z,y) and
(y,x) is an arc of T

m A set of subgraphs of G or D is said to be vertex-disjoint(
briefly disjoint ) if no two of them have any common vertex in
Gor D.

m A 2-factor of a graph G is a spanning subgraph of GG such
that each component is a cycle.

A hamiltonian cycle is a 2-factor with exactly one
component.

m A cycle factor of a digraph D is a spanning subgraph of D
such that each component is a cycle in D.

a /720



Disjoint cycles in digraphs

L2. Introduction and Main Theorem

2. Introduction and Main Theorem

For a graph G, if e(G) > n, or 6(G) >
2, then GG contains a cycle.

How about two disjoint cycles? )

= P. Erdés, L. Pdsa, 1962
For every graph G, if n > 6 and e(G) > 3n — 6, then G
has 2 disjoint cycles or isomorphic to K3 + (n — 3)Kj.

R /20



Disjoint cycles in digraphs

L2. Introduction and Main Theorem

Given an integer £ > 1, how about k disjoint cycles? J

m K. Corradi and A. Hajnal, 1963
For any positive integer k£ and any graph G, if n > 3k and
d(G) > 2k, then G has k disjoint cycles.

Sharpness of degree condition is given by G = Ko 1 + mKj.

/(Zk-l

A

m independent vertices

G =Ko 1+mK;
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Disjoint cycles in digraphs

L2. Introduction and Main Theorem

What is the degree condition for the
disjoint cycles with the same length?

-y

m G. A. Dirac, 1963

For any positive integer k£ and any graph G, if n > 3k and
d(G) > (n+k)/2, then G contains k disjoint triangles.

= The papers in this topic can be found in [Degree Conditions
for the Existence of Vertex-Disjoint Cycles and Paths: A
Survey, Graphs and Combinatorics (2018) 34:1 - 83. ]
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Disjoint cycles in digraphs

L2. Introduction and Main Theorem

For a digraph D, if (D) > 1, then D contains a cycle.

Given a positive integer k and a digraph D,
what is the degree condition for k disjoint cycles in a digraph?

Conjecture 2.1 [Bermond, Thomassen, J. Graph Theory 5 (1)

(1981) 1-43]

For k > 1 and any digraph D, if (D) > 2k — 1, then D contains
k disjoint cycles.

= Thomassen proved the case k = 2 in 1983 (Combinatorica);

= Lichiardopol et al. proved the case k = 3 in 2009 (SIAM
Discrete Math.);

m Conjecture 2.1 remains open for k > 4.
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Disjoint cycles in digraphs

L2. Introduction and Main Theorem

Thomassen further proposed the conjecture on disjoint cycles with
the same length.

Conjecture 2.2 [Thomassen, Combinatorica 3 (3-4) (1983)

393-396.]

For each natural k and any digraph D, there exists g(k), if
(D) > g(k), then D contains k pairwise disjoint cycles of the
same length.

In 1996, Alon disproved the conjecture.

Theorem 2.3 [Alon, J. Combin. Theory Ser. B 68 (2) (1996)

167-178]

For every integer r, there exists a digraph D such that 67(D) =r,
but D contains no two edge-disjoint cycles of the same length (and
hence, of course, no two vertex-disjoint cycles of the same length).
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Disjoint cycles in digraphs

L2. Introduction and Main Theorem

Although Conjecture 2.2 is not true for general digraphs, Lichiar-
dopol believed that it is correct for tournaments. He raised the
following conjecture.

Conjecture 2.4 [Lichiardopol, Discrete Math. 310 (19) (2010)

2567-2570.]

For every tournament T, if 7(T) > (¢ — 1)k — 1, then T contains
k disjoint cycles of length ¢, where ¢ > 3 and k£ > 1.

m In the same paper, Lichiardopol himself proved that if both the
minimum out-degree and in-degree are at least (¢ — 1)k — 1,
i.e. 69(T) > (¢ — 1)k — 1, then T contains k disjoint cycles of
length q.
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Disjoint cycles in digraphs

L2. Introduction and Main Theorem

m In 2013, Jensen, Bessy and Thomassé proved Conjecture 2.4
for the case ¢ = 3 (A special case of Bermond-Thomassen

conjecture).

m We confirm Lichiardopol’'s Conjecture for g > 4.

Main Theorem 1 [F. Ma, Y. Wang and Y, 2019+]

Conjecture 2.4 is correct.
That is, for any integer ¢ > 4, kK > 1 and every tournament 7T, if
0T(T) > (¢— 1)k — 1, then it contains k disjoint cycles of length q.
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Disjoint cycles in digraphs
L2. Introduction and Main Theorem

We also improved Lichiardopol’'s theorem on semi-degree condition
significantly by proving the following theorem.

Main Theorem 2 [F. Ma and Y, Applied Mathematics and

Computation 347 (2019) 162-168.]

For integers k > 1 and g > 4, every tournament 1" with

§°(T) > (¢ — 1)k — 1 contains f(q)k — 2q disjoint cycles of length
2_
q, where f(q) = %.

Note
m f(q) > 1, when ¢ >4
m f(g) tends to 2, when ¢ tends to infinity.
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Disjoint cycles in digraphs
L3, Sketch of Main Theorem 1
3. Sketch of Main Theorem 1

Property 1. Every tournament has a hamiltonian path.
Property 2. Every strong tournament is vertex pancyclic.

m We prove Main Theorem by induction on k.

m When k =1, then 67 (T) > ¢ — 2.
Let P = (v, ---v1) be a hamiltonian path of T
Consider vy, since d*(v1) > ¢ — 2 and all its out-neighbours
are on P, there exists v; with i > ¢ satisfying v1v; € A.

m So there is a cycle v;v;—1---viv; of length at least q. By
property of pancyclicity, 7' contains a g-cycle (a cycle of length
q).
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Disjoint cycles in digraphs
L3. Sketch of Main Theorem 1

m Suppose that Main Theorem is correct for k — 1,
ie. if 7(T) > (¢—1)(k—1)—1, then T contains k—1 disjoint
g-cycles.

m Now we consider the case k.
Since in this case 67 (T) > (¢ — 1)k —1> (¢—1)(k —1) — 1,
T contains k — 1 disjoint g-cycles.

m Using the following three auxiliary theorems, we may show that
T contains k disjoint g-cycles,

Let ¢ > 9 and k < ¢+ 1. For every collection F of k — 1 disjoint
g-cycles of T, there exists a collection of k disjoint g-cycles in T’
which intersects T'\ F on at most 3¢ vertices.
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Disjoint cycles in digraphs
L3. Sketch of Main Theorem 1

Let ¢ > 10 and k > 3.3098,/q. For every collection F of k — 1
disjoint g-cycles of T', there exists a collection of k disjoint g-cycles
in T which intersects 7"\ F on at most 3¢ vertices.

e Since 3.3098,/q < ¢+2 when g > 8, Theorems 3.1 and 3.2 imply
Main Theorem for g > 10.

When 4 < ¢ <9, we can refine Theorem 3.2 with " |F N (T'\ F)| <
3q—6".

That is, For every collection F of k — 1 disjoint g-cycles of T', there
exists a collection of k disjoint g-cycles in T" which intersects 7'\ F
on at most 3q — 6 vertices.
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int cycles in digraphs
L3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.1

Let F = {C4,...,Ck_1} be a collection of k — 1 disjoint g-cycles,
P = (ur - -ugu1) be a hamiltonian path of 7'\ F.

We design the following pseudo algorithm.

step 0. Set F :={C1,...,Ck_1}, P:= (uy---usuq) and h:=0.
Let C = (uj—1uj—2---uiuj—1) be the longest cycle of T'[V(P)] through vertex

uq, if it exists.

step 1. If C does not exist, then we construct a collection F’ of k — 1 disjoint
g-cycles and a new hamiltonian path P’ = (v, ---vav1) in T \ F’ such that
[V(FYNV(P)| < 2and T\ F contains a cycle C’ through vertex v;. Set
F:=F,P:=P,C:=C"and h:= h+ 1. Otherwise, go to step 2.

16"/ 20



int cycles in digraphs
L3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.1

step 2. Construct a collection 7 of k—1 disjoint g-cycles and a new hamiltonian
path P’ = (v, -+ wov1) in T\ F’ such that [V(F)NV((P))| <2and T\ F
contains a cycle C’ with |C’| > |C|+1 through vertex v;. Set F := F', P := P/,
C:=C"and h:=h+1.

Fig.1

step 3. If |C| < ¢ — 1, then do step 2 recursively until |C| > g. Otherwise,
output F U {C} and h.
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int cycles in digraphs
L3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.1

m After step 3, |C| > g, by pancyclicity, there is a g-cycle C’. This cycle and
F form a collection of k disjoint g-cycles.

m Now we prove that the vertex number of |(V(F U {C’})) N V(P)] is at
most 3q by using the algorithm.

m At each iteration of step 1 and step 2, we add at most two vertices outside
{C4,...,Ck_1} into F. It follows by h < ¢ — 2 that

[V(F)NV({(T\{Ch,...,Cr-1}))| < 2h <2q—4.
Therefore,
(FU{CH N (T\{Ch,...,Cra})| < 2¢ —4+q =3¢ — 4.

Thus Theorem 3.1 holds.
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int cycles in digraphs
L3. Sketch of Main Theorem 1

Sketch of Theorem 3.2

Let F = {C4,...,Cx_1} be a collection of k — 1 disjoint g-cycles and let P =
(ur - - -u2u1) be a hamiltonian path of 7'\ F. Partition P by letting U; =
{u1, ..., ug+1}t, S = {ugt2,...,usq—5} and Uz = V(P) \ (U1 U S). That is,
U, is the set of the last ¢ + 1 vertices on P and S is the last 3¢ — 6 vertices on
P\ Us.

Uz S Ul

P . S >- P o > o
O = >

Y

A
>

Ur Uag-6 Uag-s Ug+2 Ug+1 Uy

Fig.2 Partition of P
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Disjoint cycles in digraphs
L3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.2

Denote by 7 the set of g-cycles that receive at least ¢ arcs each from Uy, by O
the set of g-cycles that send at least 6g— 1 arcs each to Uz and R = F\ (ZUO).
Furthermore, 4,0 and r, respectively, denote the size of Z, O and R.

remaining

U, Usgs Usq-5 Ug+2 Ug+1 Uy

Fig.3 Partition of F
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Disjoint cycles in digraphs
L3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.2

Now we estimate the lower and upper bound of the number of arcs leaving from
F\NO=ZUR.

F\O

estiamte

u, Usgs Usgs Ug+2 Ug+1 up

Fig.3 Partition of F
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Disjoint cycles in digraphs
L3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.2

First, since 61(T) > (¢ — D)k — 1,

dHTUR) > qli+7)((a — Dk 1) = 2l +1)(ali +7) — 1).

On the other hand, we bound the number of arcs from Z to O and R to O,
from Z to Uz and R to Us, from ZUR to S and U;.

d"(ZUR) < (¢° — q+2)io+¢°ro+ (3¢ — 1)i + (6g — 2)r + (3q — 6)q(i + 1)

+q(i+7)(q+1) —a+(¢" —q—2)o,

where o = (¢ + 1)((g— Dk — 1) — 5(¢+ 1)g — $(¢— 2)(¢ — 3).
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Disjoint cycles in digraphs
L3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.2

So we get
ao® +bo+c <0, (1)
where
1 2 2 2 13
=50 +94-2b=(a-¢)k)+ B¢ + 59¢-9)
and

1 1
c= (30" — k" + (1 - 59— 3¢" )k+( 7 +fq—25)

Obviously, a = 3¢° 4+ ¢ — 2 > 0. Inequality (1) admits solution for o only if
45
A = (—2¢°+9¢° —8q)k*+(6¢° +7¢> —26q+8) k+4q" +18¢ +Tq2+27q 119 > 0.
(2)
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int cycles in digraphs
L3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.2

Note that (2) is a quadratic inequality for k. Since —2¢° +9¢*> — 8¢ < 0, the
inequality (2) has a solution only if

k < g(q),
where 3 )
olq) = 6q° + 7q° — 26 + 8 + f(q)
4¢3 — 18¢2% + 16¢q '
and

flg) = \/32q7 + 36¢% — 146¢° — T76q* — 1032¢3 + 5936¢2 — 4224q + 64.

It follows by ¢ > 10 that k < 3.3098,/q, i.e. the inequality (2) has a solution
only if k < 3.3098,/q. This contradicts k > 3.3098,/q. So Theorem 3.2 is
proved. [
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Disjoint cycles in digraphs
L3. Sketch of Main Theorem 1

4. Refine Theorem 3.2 for 4 < ¢ <9
Let Uy ={u1,...,uq}, S = {ugt1,...,usq—10} and Uz = V(P) \ (U1 US) (If
|P| < 4q — 10, then let Uy = {u1,...,uq}, S =V(P)\ Uy).
Define
I={CeF|d"(U1,0)>q(g—1)+1},

O={CeF|d"(C,Us)>6qg—13} and R=F\(ZUO).

e Let C be a g-cycle. If there is a g-matching M from U; to C, then d*(C, S) <
9 2 29
a4

Similarly, estimate the lower and upper bound of d*(F \ O). We get all the
possible cases: if =4, then 1 <k <4; if9>¢g>5, then1 <k <5.

From the following statement, we finish the proof of the case 4 < ¢ <9.
e Let k be an integer with & < 5. If there exist two cycles C, C2 € F such that

dt({ur,u2},Ci) > 2¢ — 1 for i = 1,2, then we can extend F.
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Disjoint cycles in digraphs
L4. Related Results and Open Problems

4. Related Results and Open Problems
—Cycle Factor in Digraphs

e For a subset W C V(D), define
§T(W) = min {d},(v) : v e W},
0~ (W) = min {d;(v) : v e W}

e The minimum semi-degree of W in D:
SO(W) = min {§H(W),6~(W)}.

Theorem 4.1 [Y. Wang and Y, 2019+]

Suppose that D is a digraph with order n and W C V(D). If
§O(W) > (3n — 3) /4, then for any k positive integers ny, ..., ny
with n; > 2 for all 4 and 3% n; < |W/|, D contains k disjoint
cycles C1, ..., Cy such that [V (C;) N W| = n; for each i.
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Disjoint cycles in digraphs
L4. Related Results and Open Problems

m A directed version of the Aigner-Brandt Theorem, when
W = V(D) [J. Lond. Math. Soc. 1 (1993) 39-51]:
If 6(G) > (2n — 1)/3, then G contains k disjoint cycles of
length nq,...,ng, respectively. (n > Zle n; and n; > 3 for
all 7)

m Sharp (in some sense)

1 —_— X X
Z — Y
(a) Dy (b) Dy

Di1:U=X=K},_1,.Y=7Z=KJ,
Dy : X = K3,,_q, Y is an independent vertex set of order k + 1.
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Disjoint cycles in digraphs
L4. Related Results and Open Problems

Conjecture 4.2 [Y. Wang and Y, 2019+]

The minimum semi-degree in Theorem 4.1 can be improved to
2n/3 when n; > 3 for all i.

The degree condition is best possible by D.

It is supported by the following conjecture.

Conjecture 4.3 [Czygrinow, Kierstead and Molla, Eur. J. Combin.

42 (2013) 1-14]
If n =3k and 6°(D) > 2k, then D contains k disjoint As.
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Disjoint cycles in digraphs
L4. Related Results and Open Problems

Remark for Theorem 4.1.
m When k=1, 8°(W) > (3n—3)/4 = (W) > 2

mlet A =" n,
If n > 2, then 8°(W) > (3n—3)/4 = °(W) > 5 + A — 1.
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