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Disjoint cycles in digraphs

1. Notation

1. Notation

A graph G = (V,E): V vertex set, E edge set.

Let n be the order of G for simplicity, i.e. n = |V |.

δ(G): the minimum degree of G.

A digraph D = (V,A): V vertex set, A arc set.

δ+(D): the minimum out-degree,

δ−(D): the minimum in-degree of D.

The semi-degree of D is δ0(D) = min{δ+(D), δ−(D)}.

In a digraph: a cycle is always directed.
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Disjoint cycles in digraphs

1. Notation

A tournament is a digraph T such that for any two distinct
vertices x and y, exactly one of the ordered pairs (x, y) and
(y, x) is an arc of T .

A set of subgraphs of G or D is said to be vertex-disjoint(
briefly disjoint ) if no two of them have any common vertex in
G or D.

A 2-factor of a graph G is a spanning subgraph of G such
that each component is a cycle.
A hamiltonian cycle is a 2-factor with exactly one
component.

A cycle factor of a digraph D is a spanning subgraph of D
such that each component is a cycle in D.
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Disjoint cycles in digraphs

2. Introduction and Main Theorem

2. Introduction and Main Theorem

For a graph G, if e(G) ≥ n, or δ(G) ≥
2, then G contains a cycle.

How about two disjoint cycles?

P. Erdős, L. Pósa, 1962
For every graph G, if n ≥ 6 and e(G) ≥ 3n− 6, then G
has 2 disjoint cycles or isomorphic to K3 + (n− 3)K1.
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Disjoint cycles in digraphs

2. Introduction and Main Theorem

Given an integer k ≥ 1, how about k disjoint cycles?

K. Corrádi and A. Hajnal, 1963
For any positive integer k and any graph G, if n ≥ 3k and
δ(G) ≥ 2k, then G has k disjoint cycles.

Sharpness of degree condition is given by G = K2k−1 +mK1.

G = K2k−1 +mK1
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Disjoint cycles in digraphs

2. Introduction and Main Theorem

What is the degree condition for the
disjoint cycles with the same length?

G. A. Dirac, 1963
For any positive integer k and any graph G, if n ≥ 3k and
δ(G) ≥ (n+ k)/2, then G contains k disjoint triangles.

The papers in this topic can be found in [Degree Conditions
for the Existence of Vertex-Disjoint Cycles and Paths: A
Survey, Graphs and Combinatorics (2018) 34:1õõõ83. ]
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Disjoint cycles in digraphs

2. Introduction and Main Theorem

For a digraph D, if δ+(D) ≥ 1, then D contains a cycle.

Given a positive integer k and a digraph D,
what is the degree condition for k disjoint cycles in a digraph?

Conjecture 2.1 [Bermond, Thomassen, J. Graph Theory 5 (1)
(1981) 1-43.]

For k ≥ 1 and any digraph D, if δ+(D) ≥ 2k − 1, then D contains
k disjoint cycles.

Thomassen proved the case k = 2 in 1983 (Combinatorica);

Lichiardopol et al. proved the case k = 3 in 2009 (SIAM
Discrete Math.);

Conjecture 2.1 remains open for k ≥ 4.
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Disjoint cycles in digraphs

2. Introduction and Main Theorem

Thomassen further proposed the conjecture on disjoint cycles with
the same length.

Conjecture 2.2 [Thomassen, Combinatorica 3 (3-4) (1983)
393-396.]

For each natural k and any digraph D, there exists g(k), if
δ+(D) ≥ g(k), then D contains k pairwise disjoint cycles of the
same length.

In 1996, Alon disproved the conjecture.

Theorem 2.3 [Alon, J. Combin. Theory Ser. B 68 (2) (1996)
167-178.]

For every integer r, there exists a digraph D such that δ+(D) = r,
but D contains no two edge-disjoint cycles of the same length (and
hence, of course, no two vertex-disjoint cycles of the same length).
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Disjoint cycles in digraphs

2. Introduction and Main Theorem

Although Conjecture 2.2 is not true for general digraphs, Lichiar-
dopol believed that it is correct for tournaments. He raised the
following conjecture.

Conjecture 2.4 [Lichiardopol, Discrete Math. 310 (19) (2010)
2567-2570.]

For every tournament T , if δ+(T ) ≥ (q − 1)k − 1, then T contains
k disjoint cycles of length q, where q ≥ 3 and k ≥ 1.

In the same paper, Lichiardopol himself proved that if both the
minimum out-degree and in-degree are at least (q − 1)k − 1,
i.e. δ0(T ) ≥ (q − 1)k − 1, then T contains k disjoint cycles of
length q.
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Disjoint cycles in digraphs

2. Introduction and Main Theorem

In 2013, Jensen, Bessy and Thomassé proved Conjecture 2.4
for the case q = 3 (A special case of Bermond-Thomassen
conjecture).

We confirm Lichiardopol’s Conjecture for q ≥ 4.

Main Theorem 1 [F. Ma, Y. Wang and Y, 2019+]

Conjecture 2.4 is correct.
That is, for any integer q ≥ 4, k ≥ 1 and every tournament T , if
δ+(T ) ≥ (q− 1)k− 1, then it contains k disjoint cycles of length q.
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Disjoint cycles in digraphs

2. Introduction and Main Theorem

We also improved Lichiardopol’s theorem on semi-degree condition
significantly by proving the following theorem.

Main Theorem 2 [F. Ma and Y, Applied Mathematics and
Computation 347 (2019) 162-168.]

For integers k ≥ 1 and q ≥ 4, every tournament T with
δ0(T ) ≥ (q − 1)k − 1 contains f(q)k − 2q disjoint cycles of length

q, where f(q) = 6q2−16q+10
3q2−3q−4

.

Note

f(q) > 1, when q ≥ 4

f(q) tends to 2, when q tends to infinity.
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Disjoint cycles in digraphs

3. Sketch of Main Theorem 1

3. Sketch of Main Theorem 1

Property 1. Every tournament has a hamiltonian path.

Property 2. Every strong tournament is vertex pancyclic.

We prove Main Theorem by induction on k.

When k = 1, then δ+(T ) ≥ q − 2.
Let P = (vn · · · v1) be a hamiltonian path of T .

Consider v1, since d+(v1) ≥ q − 2 and all its out-neighbours
are on P , there exists vi with i ≥ q satisfying v1vi ∈ A.

So there is a cycle vivi−1 · · · v1vi of length at least q. By
property of pancyclicity, T contains a q-cycle (a cycle of length
q).
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Disjoint cycles in digraphs

3. Sketch of Main Theorem 1

Suppose that Main Theorem is correct for k − 1,
i.e. if δ+(T ) ≥ (q−1)(k−1)−1, then T contains k−1 disjoint
q-cycles.

Now we consider the case k.
Since in this case δ+(T ) ≥ (q − 1)k − 1 > (q − 1)(k − 1)− 1,
T contains k − 1 disjoint q-cycles.

Using the following three auxiliary theorems, we may show that
T contains k disjoint q-cycles,

Theorem 3.1

Let q ≥ 9 and k ≤ q + 1. For every collection F of k − 1 disjoint
q-cycles of T , there exists a collection of k disjoint q-cycles in T
which intersects T \ F on at most 3q vertices.
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Disjoint cycles in digraphs

3. Sketch of Main Theorem 1

Theorem 3.2

Let q ≥ 10 and k ≥ 3.3098
√
q. For every collection F of k − 1

disjoint q-cycles of T , there exists a collection of k disjoint q-cycles
in T which intersects T \ F on at most 3q vertices.

• Since 3.3098
√
q ≤ q+ 2 when q ≥ 8, Theorems 3.1 and 3.2 imply

Main Theorem for q ≥ 10.

Theorem 3.3

When 4 ≤ q ≤ 9, we can refine Theorem 3.2 with ”|F ∩ (T \F)| ≤
3q − 6”.
That is, For every collection F of k− 1 disjoint q-cycles of T , there
exists a collection of k disjoint q-cycles in T which intersects T \ F
on at most 3q − 6 vertices.
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Disjoint cycles in digraphs

3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.1

Let F = {C1, . . . , Ck−1} be a collection of k − 1 disjoint q-cycles,

P = (ur · · ·u2u1) be a hamiltonian path of T \ F .

We design the following pseudo algorithm.

step 0. Set F := {C1, . . . , Ck−1}, P := (ur · · ·u2u1) and h := 0.

Let C = (uj−1uj−2 · · ·u1uj−1) be the longest cycle of T [V (P )] through vertex

u1, if it exists.

step 1. If C does not exist, then we construct a collection F ′ of k − 1 disjoint

q-cycles and a new hamiltonian path P ′ = (vr · · · v2v1) in T \ F ′ such that

|V (F ′) ∩ V (P )| ≤ 2 and T \ F ′ contains a cycle C′ through vertex v1. Set

F := F ′, P := P ′, C := C′ and h := h+ 1. Otherwise, go to step 2.
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Disjoint cycles in digraphs

3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.1

step 2. Construct a collection F ′ of k−1 disjoint q-cycles and a new hamiltonian

path P ′ = (vr · · · v2v1) in T \ F ′ such that |V (F ′) ∩ V ((P ))| ≤ 2 and T \ F ′

contains a cycle C′ with |C′| ≥ |C|+1 through vertex v1. Set F := F ′, P := P ′,

C := C′ and h := h+ 1.

step 3. If |C| ≤ q − 1, then do step 2 recursively until |C| ≥ q. Otherwise,

output F ∪ {C} and h.
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Disjoint cycles in digraphs

3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.1

After step 3, |C| ≥ q, by pancyclicity, there is a q-cycle C′. This cycle and

F form a collection of k disjoint q-cycles.

Now we prove that the vertex number of |(V (F ∪ {C′})) ∩ V (P )| is at

most 3q by using the algorithm.

At each iteration of step 1 and step 2, we add at most two vertices outside

{C1, . . . , Ck−1} into F . It follows by h ≤ q − 2 that

|V (F) ∩ V ((T \ {C1, . . . , Ck−1}))| ≤ 2h ≤ 2q − 4.

Therefore,

|(F ∪ {C′}) ∩ (T \ {C1, . . . , Ck−1})| ≤ 2q − 4 + q = 3q − 4.

Thus Theorem 3.1 holds.
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Disjoint cycles in digraphs

3. Sketch of Main Theorem 1

Sketch of Theorem 3.2

Let F = {C1, . . . , Ck−1} be a collection of k − 1 disjoint q-cycles and let P =

(ur · · ·u2u1) be a hamiltonian path of T \ F . Partition P by letting U1 =

{u1, . . . , uq+1}, S = {uq+2, . . . , u4q−5} and U2 = V (P ) \ (U1 ∪ S). That is,

U1 is the set of the last q + 1 vertices on P and S is the last 3q − 6 vertices on

P \ U1.
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Disjoint cycles in digraphs

3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.2

Denote by I the set of q-cycles that receive at least q2 arcs each from U1, by O
the set of q-cycles that send at least 6q−1 arcs each to U2 and R = F \(I∪O).

Furthermore, i, o and r, respectively, denote the size of I,O and R.
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Disjoint cycles in digraphs

3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.2

Now we estimate the lower and upper bound of the number of arcs leaving from

F \ O = I ∪ R.
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Disjoint cycles in digraphs

3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.2

First, since δ+(T ) ≥ (q − 1)k − 1,

d+(I ∪ R) ≥ q(i+ r)((q − 1)k − 1)− 1

2
q(i+ r)(q(i+ r)− 1).

On the other hand, we bound the number of arcs from I to O and R to O,

from I to U2 and R to U2, from I ∪ R to S and U1.

d+(I ∪ R) ≤ (q2 − q + 2)io+ q2ro+ (3q − 1)i+ (6q − 2)r + (3q − 6)q(i+ r)

+q(i+ r)(q + 1)− α+ (q2 − q − 2)o,

where α = (q + 1)((q − 1)k − 1)− 1
2
(q + 1)q − 1

2
(q − 2)(q − 3).
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Disjoint cycles in digraphs

3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.2

So we get

ao2 + bo+ c < 0, (1)

where

a =
1

2
q2 + q − 2, b = ((q − q2)k) + (3q2 +

13

2
q − 9)

and

c = (
1

2
q2 − q)k2 + (1− 1

2
q − 3q2)k + (

5

2
q2 +

11

2
q − 25).

Obviously, a = 1
2
q2 + q − 2 > 0. Inequality (1) admits solution for o only if

∆ = (−2q3+9q2−8q)k2+(6q3+7q2−26q+8)k+4q4+18q3+
145

4
q2+27q−119 > 0.

(2)
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Disjoint cycles in digraphs

3. Sketch of Main Theorem 1

3. Sketch of Theorem 3.2

Note that (2) is a quadratic inequality for k. Since −2q3 + 9q2 − 8q < 0, the

inequality (2) has a solution only if

k < g(q),

where

g(q) =
6q3 + 7q2 − 26q + 8 + f(q)

4q3 − 18q2 + 16q
,

and

f(q) =
√

32q7 + 36q6 − 146q5 − 776q4 − 1032q3 + 5936q2 − 4224q + 64.

It follows by q ≥ 10 that k < 3.3098
√
q, i.e. the inequality (2) has a solution

only if k < 3.3098
√
q. This contradicts k ≥ 3.3098

√
q. So Theorem 3.2 is

proved. �
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Disjoint cycles in digraphs

3. Sketch of Main Theorem 1

4. Refine Theorem 3.2 for 4 ≤ q ≤ 9
Let U1 = {u1, . . . , uq}, S = {uq+1, . . . , u4q−10} and U2 = V (P ) \ (U1 ∪ S) (If

|P | < 4q − 10, then let U1 = {u1, . . . , uq}, S = V (P ) \ U1).

Define

I = {C ∈ F | d+(U1, C) ≥ q(q − 1) + 1},

O = {C ∈ F | d+(C,U2) ≥ 6q − 13} and R = F \ (I ∪ O).

• Let C be a q-cycle. If there is a q-matching M from U1 to C, then d+(C, S) ≤
9
4
q2 − 29

4
q.

Similarly, estimate the lower and upper bound of d+(F \ O). We get all the

possible cases: if q = 4, then 1 ≤ k ≤ 4; if 9 ≥ q ≥ 5, then 1 ≤ k ≤ 5.

From the following statement, we finish the proof of the case 4 ≤ q ≤ 9.

• Let k be an integer with k ≤ 5. If there exist two cycles C1, C2 ∈ F such that

d+({u1, u2}, Ci) ≥ 2q − 1 for i = 1, 2, then we can extend F .
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Disjoint cycles in digraphs

4. Related Results and Open Problems

4. Related Results and Open Problems
–Cycle Factor in Digraphs

• For a subset W ⊆ V (D), define

δ+(W ) = min {d+D(v) : v ∈W},

δ−(W ) = min {d−D(v) : v ∈W}.

• The minimum semi-degree of W in D:
δ0(W ) = min {δ+(W ), δ−(W )}.

Theorem 4.1 [Y. Wang and Y, 2019+]

Suppose that D is a digraph with order n and W ⊆ V (D). If
δ0(W ) ≥ (3n− 3)/4, then for any k positive integers n1, . . . , nk
with ni ≥ 2 for all i and

∑k
i=1 ni ≤ |W |, D contains k disjoint

cycles C1, . . . , Ck such that |V (Ci) ∩W | = ni for each i.
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Disjoint cycles in digraphs

4. Related Results and Open Problems

A directed version of the Aigner-Brandt Theorem, when
W = V (D) [J. Lond. Math. Soc. 1 (1993) 39-51]:
If δ(G) ≥ (2n − 1)/3, then G contains k disjoint cycles of
length n1, . . . , nk, respectively. (n ≥

∑k
i=1 ni and ni ≥ 3 for

all i)

Sharp (in some sense)

D1 : U = X = K∗4k−1, Y = Z = K∗4k

D2 : X = K∗2k−1, Y is an independent vertex set of order k + 1.
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4. Related Results and Open Problems

Conjecture 4.2 [Y. Wang and Y, 2019+]

The minimum semi-degree in Theorem 4.1 can be improved to
2n/3 when ni ≥ 3 for all i.

The degree condition is best possible by D2.

It is supported by the following conjecture.

Conjecture 4.3 [Czygrinow, Kierstead and Molla, Eur. J. Combin.
42 (2013) 1-14]

If n = 3k and δ0(D) ≥ 2k, then D contains k disjoint 4s.
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4. Related Results and Open Problems

Remark for Theorem 4.1.

When k = 1, δ0(W ) ≥ (3n− 3)/4 =⇒ δ0(W ) ≥ n
2

Let λ =
∑k

i=1 ni.

If n ≥ 2λ, then δ0(W ) ≥ (3n− 3)/4 =⇒ δ0(W ) ≥ n
2 + λ− 1.
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4. Related Results and Open Problems
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