Constructions for constant dimension codes

Tao (弢) Feng (冯)

Department of Mathematics Beijing Jiaotong University

Joint work with Shuangqing Liu and Yanxun Chang

August 20, 2019

1/71

Outline

Background and Definitions

- 2 Constructions for CDCs
 - Lifted maximum rank distance codes
 - Lifted Ferrers diagram rank-metric codes
 - Parallel constructions
 - Summary Working points
- 3 Constructions for FDRM codes
 - Preliminaries
 - Via different representations of elements of a finite field
 - Based on Subcodes of MRD Codes
 - New FDRM codes from old

Network coding

Network coding, introduced in the paper ^a, refers to coding at the intermediate nodes when information is multicasted in a network. Often information is modeled as vectors of fixed length over a finite field \mathbb{F}_q , called *packets*. To improve the performance of the communication, intermediate nodes should forward random linear \mathbb{F}_q -combinations of the packets they receive. Hence, the vector space spanned by the packets injected at the source is globally preserved in the network when no error occurs.

^aR. Ahlswede, N. Cai, S.-Y.R. Li, and R.W. Yeung, Network information flow, *IEEE Trans. Inf. Theory*, 46 (2000), 1204–1216.

A nice reference: C. Fragouli and E. Soljanin, Network coding fundamentals, *Foundations and Trends in Networking*, 2 (2007), 1–133.

Subspace codes and constant-dimension codes

Let \mathbb{F}_q^n be the set of all vectors of length n over \mathbb{F}_q . \mathbb{F}_q^n is a vector space with dimension n over \mathbb{F}_q .

- This observation led Kötter and Kschischang ^a to model network codes as subsets of projective space $\mathcal{P}_q(n)$, the set of all subspaces of \mathbb{F}_q^n , or of Grassmann space $\mathcal{G}_q(n,k)$, the set of all subspaces of \mathbb{F}_q^n having dimension k.
- Subsets of $\mathcal{P}_q(n)$ are called *subspace codes* or *projective codes*, while subsets of the Grassmann space are referred to as *constant-dimension codes* or *Grassmann codes*.

^aR. Kötter and F.R. Kschischang, Coding for errors and erasures in random network coding, *IEEE Trans. Inf. Theory*, 54 (2008), 3579–3591.

The subspace distance

Definition

The subspace distance

$$d_{S}(\mathcal{U}, \mathcal{V}) := \dim (\mathcal{U} + \mathcal{V}) - \dim (\mathcal{U} \cap \mathcal{V})$$
$$= \dim \mathcal{U} + \dim \mathcal{V} - 2\dim(\mathcal{U} \cap \mathcal{V})$$

for all $\mathcal{U}, \mathcal{V} \in \mathcal{P}_q(n)$ is used as a distance measure for subspace codes.

- This talk only focuses on constant dimension codes (CDC).
- An $(n, d, k)_q$ -CDC with M codewords is written as $(n, M, d, k)_q$ -CDC.

The subspace distance

Definition

The subspace distance

$$d_{S}(\mathcal{U}, \mathcal{V}) := \dim (\mathcal{U} + \mathcal{V}) - \dim (\mathcal{U} \cap \mathcal{V})$$
$$= \dim \mathcal{U} + \dim \mathcal{V} - 2\dim(\mathcal{U} \cap \mathcal{V})$$

for all $\mathcal{U}, \mathcal{V} \in \mathcal{P}_q(n)$ is used as a distance measure for subspace codes.

- This talk only focuses on constant dimension codes (CDC).
- An $(n, d, k)_q$ -CDC with M codewords is written as $(n, M, d, k)_q$ -CDC.
- Given n, d, k and q, denote by $A_q(n, d, k)$ the maximum number of codewords among all $(n, d, k)_q$ -CDCs.
- An $(n, d, k)_q$ -CDC with $A_q(n, d, k)$ codewords is said to be optimal.

Some upper bounds

• Singleton bound (Theorem 9 in ^a):

$$A_q(n, 2\delta, k) \le \begin{bmatrix} n - \delta + 1 \\ k - \delta + 1 \end{bmatrix}_q.$$

• Johnson-Type bound (Theorem 3 in ^b)

$$A_q(n, 2\delta, k) \le \frac{q^n - 1}{q^k - 1} A_q(n - 1, 2\delta, k - 1).$$

^aR. Kötter and F.R. Kschischang, Coding for errors and erasures in random network coding, *IEEE Trans. Inf. Theory*, 54 (2008), 3579–3591. ^bS.-T. Xia and F.-W. Fu, Johnson type bounds on constant dimension codes, *Des. Codes Cryptogr.*, 50 (2009), 163–172.

 http://subspacecodes.uni-bayreuth.de. (Maintained by Daniel Heinlein, Michael Kiermaier, Sascha Kurz, Alfred Wassermann)

Remarks on parameters n, d and k

• By taking orthogonal complements of subspaces for each codeword of an $(n, d, k)_q$ -CDC, one can get an $(n, d, n - k)_q$ -CDC.

Proposition

 $A_q(n, d, k) = A_q(n, d, n - k).$

Proof.

$$d_{S}(\overline{\mathcal{U}},\overline{\mathcal{V}}) = \dim \overline{\mathcal{U}} + \dim \overline{\mathcal{V}} - 2\dim(\overline{\mathcal{U}} \cap \overline{\mathcal{V}})$$

= $n - \dim \mathcal{U} + n - \dim \mathcal{V} - 2(n - \dim(\mathcal{U} + \mathcal{V}))$
= $2\dim(\mathcal{U} + \mathcal{V}) - \dim \mathcal{U} - \dim \mathcal{V}$
= $\dim (\mathcal{U} + \mathcal{V}) - \dim (\mathcal{U} \cap \mathcal{V}) = d_{S}(\mathcal{U},\mathcal{V}).$

• Therefore, assume that $n \geq 2k$.

Remarks on parameters n, d and k

• For $\mathcal{U} \neq \mathcal{V} \in \mathcal{G}_q(n, k)$, $d_S(\mathcal{U}, \mathcal{V}) = \dim \mathcal{U} + \dim \mathcal{V} - 2\dim(\mathcal{U} \cap \mathcal{V})$ $= 2k - 2\dim(\mathcal{U} \cap \mathcal{V}).$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

8/71

• Therefore, assume that $n \ge 2k \ge d$.

Matrix representation of subspaces

• For
$$\mathcal{U}
eq \mathcal{V} \in \mathcal{G}_q(n,k)$$
,

$$d_{S}(\mathcal{U}, \mathcal{V}) = 2k - 2\dim(\mathcal{U} \cap \mathcal{V})$$
$$= 2 \cdot rank \begin{pmatrix} \mathsf{U} \\ \mathsf{V} \end{pmatrix} - 2k,$$

where $\mathbf{U} \in Mat_{k \times n}(\mathbb{F}_q)$ is a matrix such that $\mathcal{U} = \text{rowspace}(\mathbf{U})$. • The matrix \mathbf{U} is usually not unique.

Outline

Background and Definitions

2 Constructions for CDCs

Lifted maximum rank distance codes

- Lifted Ferrers diagram rank-metric codes
- Parallel constructions
- Summary Working points
- 3 Constructions for FDRM codes
 - Preliminaries
 - Via different representations of elements of a finite field
 - Based on Subcodes of MRD Codes
 - New FDRM codes from old

Rank metric codes

Let $\mathbb{F}_q^{m \times n}$ denote the set of all $m \times n$ matrices over \mathbb{F}_q . It is an \mathbb{F}_q -vector space.

• The rank distance on $\mathbb{F}_q^{m \times n}$ is defined by

$$d_R(\mathbf{A}, \mathbf{B}) = rank(\mathbf{A} - \mathbf{B})$$

for $\mathbf{A}, \mathbf{B} \in \mathbb{F}_{a}^{m \times n}$.

• An $[m \times n, k, \delta]_q$ rank metric code \mathcal{D} is a k-dimensional \mathbb{F}_q -linear subspace of $\mathbb{F}_q^{m \times n}$ with minimum rank distance

$$\delta = \min_{\mathbf{A}, \mathbf{B} \in \mathcal{C}, \mathbf{A} \neq \mathbf{B}} \{ d_R(\mathbf{A}, \mathbf{B}) \}.$$

Maximum rank distance codes

Singleton-like upper bound for MRD codes

Any rank-metric codes $[m \times n, k, \delta]_q$ code satisfies that

$$k \le \max\{m, n\}(\min\{m, n\} - \delta + 1).$$

When the equality holds, \mathcal{D} is called a *linear maximum rank distance code*, denoted by an MRD $[m \times n, \delta]_q$ code. Linear MRD codes exists for all feasible parameters^{a b c}.

^aP. Delsarte, Bilinear forms over a finite field, with applications to coding theory, *J. Combin. Theory A*, 25 (1978), 226–241.

^bÈ.M. Gabidulin, Theory of codes with maximum rank distance, *Problems Inf. Transmiss.*, 21 (1985), 3–16.

^cR.M. Roth, Maximum-rank array codes and their application to crisscross error correction, *IEEE Trans. Inf. Theory*, 37 (1991), 328–336.

Lifted MRD codes

Theorem

Let $n \geq 2k$. The lifted MRD code

$$\mathcal{C} = \{ (\boldsymbol{I}_k \mid \boldsymbol{A}) : \boldsymbol{A} \in \mathcal{D} \}$$

is an $(n, q^{(n-k)(k-\delta+1)}, 2\delta, k)_q$ -CDC, where \mathcal{D} is an $\mathsf{MRD}[k \times (n-k), \delta]_q$ code ^a.

^aD. Silva, F.R. Kschischang, and R. Kötter, A rank-metric approach to error control in random network coding, *IEEE Trans. Inf. Theory*, 54 (2008), 3951–3967.

• Recall that
$$d_S(\mathcal{U}, \mathcal{V}) = 2 \cdot rank \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix} - 2k$$
.

Lifted MRD codes

Proof.

It suffices to check the subspace distance of C. For any $U, V \in C$ and $U \neq V$, where $U = \mathsf{rowspace}(I_k \mid A)$ and $V = \mathsf{rowspace}(I_k \mid B)$, we have

$$d_{S}(\mathcal{U},\mathcal{V}) = 2 \cdot rank \begin{pmatrix} \mathbf{I}_{k} & \mathbf{A} \\ \mathbf{I}_{k} & \mathbf{B} \end{pmatrix} - 2k = 2 \cdot rank \begin{pmatrix} \mathbf{I}_{k} & \mathbf{A} \\ \mathbf{O} & \mathbf{B} - \mathbf{A} \end{pmatrix} - 2k$$
$$= 2 \cdot rank(\mathbf{B} - \mathbf{A}) \ge 2\delta.$$

Lifted MRD codes

Proof.

It suffices to check the subspace distance of C. For any $U, V \in C$ and $U \neq V$, where $U = \operatorname{rowspace}(I_k \mid A)$ and $V = \operatorname{rowspace}(I_k \mid B)$, we have

$$d_{S}(\mathcal{U},\mathcal{V}) = 2 \cdot rank \begin{pmatrix} \mathbf{I}_{k} & \mathbf{A} \\ \mathbf{I}_{k} & \mathbf{B} \end{pmatrix} - 2k = 2 \cdot rank \begin{pmatrix} \mathbf{I}_{k} & \mathbf{A} \\ \mathbf{O} & \mathbf{B} - \mathbf{A} \end{pmatrix} - 2k$$
$$= 2 \cdot rank(\mathbf{B} - \mathbf{A}) \ge 2\delta.$$

 Silva, Kschischang and Kötter pointed out that lifted MRD codes can result in asymptotically optimal CDCs, and can be decoded efficiently in the context of random linear network coding.

Outline

2 Constructions for CDCs

- Lifted maximum rank distance codes
- Lifted Ferrers diagram rank-metric codes
- Parallel constructions
- Summary Working points
- 3 Constructions for FDRM codes
 - Preliminaries
 - Via different representations of elements of a finite field
 - Based on Subcodes of MRD Codes
 - New FDRM codes from old

Ferrers diagram rank-metric codes

- To obtain optimal CDCs, Etzion and Silberstein ¹ presented an effective construction, named the multilevel construction, which generalizes the lifted MRD codes construction by introducing a new family of rank-metric codes: Ferrers diagram rank-metric codes.
- A Ferrers diagram \mathcal{F} is a pattern of dots such that all dots are shifted to the right of the diagram and the number of dots in a row is less than or equal to the number of dots in the row above.
- For example, let $\mathcal{F} = [2, 3, 4, 5]$ be a 5×4 Ferrers diagram:

¹T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, *IEEE Trans. Inf. Theory*, 55 (2009), 2909–2919.

Ferrers diagram rank-metric codes

• Let \mathcal{F} be a Ferrers diagram of size $m \times n$. A Ferrers diagram code \mathcal{C} in \mathcal{F} is an $[m \times n, k, \delta]_q$ rank metric code such that all entries not in \mathcal{F} are 0. Denote it by an $[\mathcal{F}, k, \delta]_q$ code.

Ferrers diagram rank-metric codes

- Let \mathcal{F} be a Ferrers diagram of size $m \times n$. A Ferrers diagram code \mathcal{C} in \mathcal{F} is an $[m \times n, k, \delta]_q$ rank metric code such that all entries not in \mathcal{F} are 0. Denote it by an $[\mathcal{F}, k, \delta]_q$ code.
- An $[\mathcal{F}, k, \delta]_q$ code exists if and only if an $[\mathcal{F}^t, k, \delta]_q$ code exists.
- W.I.o.g, assume that $m \ge n \ge \delta$.

Matrix representation of a codeword in subspace codes

Example

An $\mathcal{U} \in \mathcal{G}_2(7,3)$ is listed below:

The basis of ${\cal U}$ can be represented by a 3×7 matrix:

1	1	0	0	0	1	1	0 \	١
	0	0	1	0	1	0	1).
	0	0	0	1	0	1	1,	/

However there exists a unique matrix representation of elements of the Grassmannian, namely the reduced row echelon forms.

The identifying vector

Definition

The identifying vector $v(\mathbf{U})$ of a matrix \mathbf{U} in reduced row echelon form is the binary vector of length n and weight k such that the 1's of $v(\mathbf{U})$ are in the positions where \mathbf{U} has its leading ones.

Example

The basis of ${\cal U}$ can be represented by a 3×7 matrix:

Its identifying vector is (1011000).

Two basic lemmas

Lemma 1 [Etzion and Silberstein, 2009]

Let \mathcal{U} and $\mathcal{V} \in \mathcal{G}_q(n, k)$ and **U** and **V** their reduced row echelon matrices representation, respectively. Let $v(\mathbf{U}) = v(\mathbf{V})$. Then

$$d_S(\mathcal{U}, \mathcal{V}) = 2d_R(\mathbf{D}_{\mathbf{U}}, \mathbf{D}_{\mathbf{V}}),$$

where D_U and D_V denote the submatrices of U and V, respectively, without the columns of their leading ones.

• To prove it, simply use the fact that $d_S(\mathcal{U}, \mathcal{V}) = 2 \cdot rank(\mathbf{U}, \mathbf{V}) - 2k$.

イロト 不得下 イヨト イヨト

20/71

Two basic lemmas

Lemma 2 [Etzion and Silberstein, 2009]

Let \mathcal{U} and $\mathcal{V} \in \mathcal{G}_q(n,k)$, and **U** and **V** be their reduced row echelon matrices representation, respectively. Then

$$d_S(\mathcal{U}, \mathcal{V}) \ge d_H(v(\mathbf{U}), v(\mathbf{V})).$$

Example

Task: Construct a constant-dimension code in \mathbb{F}_2^6 with subspace distance 4 and each codeword having dimension 3. Step 1: Let n = 6, k = 3, and

 $\mathcal{C} = \{(111000, 100110, 010101, 001011)\}$

be a constant weight code of length 6, weight 3, and minimum Hamming distance 4.

Step 2:

Example

Step 2 (Cont.): $(010101): \begin{pmatrix} 0 & 1 & \bullet & 0 & \bullet & 0 \\ 0 & 0 & 0 & 1 & \bullet & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} \bullet & \bullet \\ 0 & \bullet \end{pmatrix}$ $(001011): \begin{pmatrix} 0 & 0 & 1 & \bullet & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \longrightarrow (\bullet)$

Multilevel construction [Etzion and Silberstein, 2009]

- Take a binary Hamming code of length n, weight k and minimum Hamming distance 2δ.
- Find the corresponding matrices (i.e., Ferrers diagrams) such that these codewords are their identifying vectors.
- Fill each of the Ferrers diagrams with a compatible Ferrers diagram code with minimum rank distance δ .

One can check (with the two Lemmas) that the row spaces of the resulting matrices form a constant dimension code in $\mathcal{G}_q(n,k)$ with minimum subspace distance 2δ .

²A.-L. Trautmann and J. Rosenthal, New improvements on the Echelon-Ferrers construction, in Proc. 19th Int. Symp. Math. Theory Netw. Syst., Jul. 2010, 405–408.

Multilevel construction [Etzion and Silberstein, 2009]

- Take a binary Hamming code of length n, weight k and minimum Hamming distance 2δ.
- Find the corresponding matrices (i.e., Ferrers diagrams) such that these codewords are their identifying vectors.
- Fill each of the Ferrers diagrams with a compatible Ferrers diagram code with minimum rank distance δ.

One can check (with the two Lemmas) that the row spaces of the resulting matrices form a constant dimension code in $\mathcal{G}_q(n,k)$ with minimum subspace distance 2δ .

• Remark: the skeleton codes; lexicodes; pending dots²

²A.-L. Trautmann and J. Rosenthal, New improvements on the Echelon-Ferrers construction, in Proc. 19th Int. Symp. Math. Theory Netw. Syst., Jul. 2010, 405–408.

Remark [Liu, Chang, F., 2019+]

(n,k,d)	known lower bound	improved lower bound
(10,5,6)	$q^{15} + q^6 + 2q^2 + q + 1$	$q^{15} + q^6 + 2q^2 + q + 2$
(11,5,6)	$q^{18} + q^9 + q^6 + q^5 + 3q^4 + 3q^3 + 3q^2 + q$	$q^{18} + q^9 + q^6 +3q^5 + 3q^4 + q^3 + 3q^2 + q + 1$
(14,4,6)	$ \begin{array}{c} q^{20} + q^{14} + q^{10} + q^9 \\ + q^8 + 2(q^6 + q^5 + q^4) + q^3 + q^2 \end{array} $	$\begin{array}{c} q^{20} + q^{14} + q^{10} + q^9 \\ + 2q^8 + O(q^8) \end{array}$

Outline

2 Constructions for CDCs

- Lifted maximum rank distance codes
- Lifted Ferrers diagram rank-metric codes

Parallel constructions

- Summary Working points
- 3 Constructions for FDRM codes
 - Preliminaries
 - Via different representations of elements of a finite field
 - Based on Subcodes of MRD Codes
 - New FDRM codes from old

Xu and Chen's Construction

Theorem [Xu and Chen, 2018]

For any positive integers k and δ such that $k\geq 2\delta$,

$$A_q(2k, 2\delta, k) \ge q^{k(k-\delta+1)} + \sum_{i=\delta}^{k-\delta} A_i$$
,

where A_i denotes the number of codewords with rank *i* in an $MRD[k \times k, \delta]_q$ code ^a.

^aL. Xu and H. Chen, New constant-Dimension subspace codes from maximum rank distance codes, *IEEE Trans. Inf. Theory*, 64 (2018), 6315–6319.

• Their proof depends on some knowledge of linearized polynomials.

Rank distribution

Theorem

Let \mathcal{D} be an $MRD[m \times n, \delta]_q$ code, and $A_i = |M \in \mathcal{D} : rank(M) = i|$ for $0 \le i \le n$. Its rank distribution is given by $A_0 = 1$, $A_i = 0$ for $1 \le i \le \delta - 1$, and

$$A_{\delta+i} = \begin{bmatrix} n \\ \delta+i \end{bmatrix}_q \sum_{j=0}^i (-1)^{j-i} \begin{bmatrix} \delta+i \\ i-j \end{bmatrix}_q q^{\binom{i-j}{2}} (q^{m(j+1)}-1)$$

for $0 \leq i \leq n - \delta^{ab}$.

^aP. Delsarte, Bilinear forms over a finite field, with applications to coding theory, *J. Combin. Theory A*, 25 (1978), 226–241.

^bÈ.M. Gabidulin, Theory of codes with maximum rank distance, *Problems Inf. Transmiss.*, 21 (1985), 3–16.

Rank metric codes with given ranks

• Let $K \subseteq \{0, 1, \dots, n\}$ and δ be a positive integer.

Definition

 $\mathcal{D}\subseteq\mathbb{F}_q^{m\times n}$ is an $(m\times n,\delta,K)_q$ rank metric code with given ranks (GRMC) if it satisfies

(1) $rank(\mathbf{D}) \in K$ for any $\mathbf{D} \in \mathcal{D}$;

(2)
$$d_R(\boldsymbol{D}_1, \boldsymbol{D}_2) := rank(\boldsymbol{D}_1 - \boldsymbol{D}_2) \ge \delta$$
 for any $\boldsymbol{D}_1 \neq \boldsymbol{D}_2 \in \mathcal{D}$.

• When $K = \{0, 1, ..., n\}$, a GRMC is just a usual rank-metric code (not necessarily linear).

Rank metric codes with given ranks

• Let $K \subseteq \{0, 1, \dots, n\}$ and δ be a positive integer.

Definition

 $\mathcal{D}\subseteq\mathbb{F}_q^{m\times n}$ is an $(m\times n,\delta,K)_q$ rank metric code with given ranks (GRMC) if it satisfies

(1) $rank(\mathbf{D}) \in K$ for any $\mathbf{D} \in \mathcal{D}$;

(2)
$$d_R(\boldsymbol{D}_1, \boldsymbol{D}_2) := rank(\boldsymbol{D}_1 - \boldsymbol{D}_2) \ge \delta$$
 for any $\boldsymbol{D}_1 \neq \boldsymbol{D}_2 \in \mathcal{D}$.

• When $K = \{0, 1, ..., n\}$, a GRMC is just a usual rank-metric code (not necessarily linear).

• If $|\mathcal{D}| = M$, then it is often written as an $(m \times n, M, \delta, K)_q$ -GRMC.

Parallel constructions

Parallel construction

Theorem [Liu, Chang, F., 2019+]

Let $n \geq 2k \geq 2\delta$. If there exists a $(k \times (n-k), M, \delta, [0, k-\delta])_q$ -GRMC, then there exists an $(n, q^{(n-k)(k-\delta+1)} + M, 2\delta, k)_q$ -CDC.

Parallel constructions

Parallel construction

Theorem [Liu, Chang, F., 2019+]

Let $n \geq 2k \geq 2\delta$. If there exists a $(k \times (n-k), M, \delta, [0, k-\delta])_a$ -GRMC, then there exists an $(n, q^{(n-k)(k-\delta+1)} + M, 2\delta, k)_q$ -CDC.

Proof.

- \mathcal{D}_1 : MRD[$k \times (n-k), \delta$]_{*a*} code.
- \mathcal{D}_2 : $(k \times (n-k), M, \delta, [0, k-\delta])_a$ -GRMC.
- $\mathcal{C}_1 = \{ (\boldsymbol{I}_k \mid \boldsymbol{A}) : \boldsymbol{A} \in \mathcal{D}_1 \}.$
- $C_2 = \{ (B \mid I_k) : B \in D_2 \}.$
- Then $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$ forms an $(n, q^{(n-k)(k-\delta+1)} + M, 2\delta, k)_a$ -CDC.
For any
$$\mathcal{U} = \operatorname{rowspace}(\mathbf{I}_k \mid \mathbf{A}) \in \mathcal{C}_1 \text{ and } \mathcal{V} = \operatorname{rowspace}(\mathbf{B} \mid \mathbf{I}_k) \in \mathcal{C}_2$$
, where
 $\mathbf{A} = (\underbrace{\mathbf{A}_1}_{n-2k} \mid \underbrace{\mathbf{A}_2}_{k}) \text{ and } \mathbf{B} = (\underbrace{\mathbf{B}_1}_{k} \mid \underbrace{\mathbf{B}_2}_{n-2k})$, we have
 $d_S(\mathcal{U}, \mathcal{V}) = 2 \cdot \operatorname{rank} \begin{pmatrix} \mathbf{I}_k & \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{I}_k \end{pmatrix} - 2k$

For any
$$\mathcal{U} = \operatorname{rowspace}(\mathbf{I}_k \mid \mathbf{A}) \in \mathcal{C}_1 \text{ and } \mathcal{V} = \operatorname{rowspace}(\mathbf{B} \mid \mathbf{I}_k) \in \mathcal{C}_2$$
, where
 $\mathbf{A} = (\underbrace{\mathbf{A}_1}_{n-2k} \mid \underbrace{\mathbf{A}_2}_{k}) \text{ and } \mathbf{B} = (\underbrace{\mathbf{B}_1}_{k} \mid \underbrace{\mathbf{B}_2}_{n-2k})$, we have
 $d_S(\mathcal{U}, \mathcal{V}) = 2 \cdot \operatorname{rank} \begin{pmatrix} \mathbf{I}_k & \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{I}_k \end{pmatrix} - 2k$
 $= 2 \cdot \operatorname{rank} \begin{pmatrix} \mathbf{I}_k & \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{O} & \mathbf{B}_2 - \mathbf{B}_1 \mathbf{A}_1 & \mathbf{I}_k - \mathbf{B}_1 \mathbf{A}_2 \end{pmatrix} - 2k$

For any
$$\mathcal{U} = \operatorname{rowspace}(\mathbf{I}_k \mid \mathbf{A}) \in \mathcal{C}_1$$
 and $\mathcal{V} = \operatorname{rowspace}(\mathbf{B} \mid \mathbf{I}_k) \in \mathcal{C}_2$, where
 $\mathbf{A} = (\underbrace{\mathbf{A}_1}_{n-2k} \mid \underbrace{\mathbf{A}_2}_{k})$ and $\mathbf{B} = (\underbrace{\mathbf{B}_1}_{k} \mid \underbrace{\mathbf{B}_2}_{n-2k})$, we have
 $d_S(\mathcal{U}, \mathcal{V}) = 2 \cdot rank \begin{pmatrix} \mathbf{I}_k & \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{I}_k \end{pmatrix} - 2k$
 $= 2 \cdot rank \begin{pmatrix} \mathbf{I}_k & \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{O} & \mathbf{B}_2 - \mathbf{B}_1\mathbf{A}_1 & \mathbf{I}_k - \mathbf{B}_1\mathbf{A}_2 \end{pmatrix} - 2k$
 $= 2 \cdot rank (\mathbf{B}_2 - \mathbf{B}_1\mathbf{A}_1 \mid \mathbf{I}_k - \mathbf{B}_1\mathbf{A}_2)$

For any
$$\mathcal{U} = \operatorname{rowspace}(\mathbf{I}_{k} \mid \mathbf{A}) \in \mathcal{C}_{1} \text{ and } \mathcal{V} = \operatorname{rowspace}(\mathbf{B} \mid \mathbf{I}_{k}) \in \mathcal{C}_{2}$$
, where
 $\mathbf{A} = (\underbrace{\mathbf{A}_{1}}_{n-2k} \mid \underbrace{\mathbf{A}_{2}}_{k}) \text{ and } \mathbf{B} = (\underbrace{\mathbf{B}_{1}}_{k} \mid \underbrace{\mathbf{B}_{2}}_{n-2k})$, we have
 $d_{S}(\mathcal{U}, \mathcal{V}) = 2 \cdot \operatorname{rank} \begin{pmatrix} \mathbf{I}_{k} \quad \mathbf{A}_{1} \quad \mathbf{A}_{2} \\ \mathbf{B}_{1} \quad \mathbf{B}_{2} \quad \mathbf{I}_{k} \end{pmatrix} - 2k$
 $= 2 \cdot \operatorname{rank} \begin{pmatrix} \mathbf{I}_{k} \quad \mathbf{A}_{1} \quad \mathbf{A}_{2} \\ \mathbf{O} \quad \mathbf{B}_{2} - \mathbf{B}_{1}\mathbf{A}_{1} \quad \mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2} \end{pmatrix} - 2k$
 $= 2 \cdot \operatorname{rank}(\mathbf{B}_{2} - \mathbf{B}_{1}\mathbf{A}_{1} \mid \mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2})$
 $\geq 2 \cdot \operatorname{rank}(\mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2})$

For any
$$\mathcal{U} = \operatorname{rowspace}(\mathbf{I}_{k} \mid \mathbf{A}) \in \mathcal{C}_{1} \text{ and } \mathcal{V} = \operatorname{rowspace}(\mathbf{B} \mid \mathbf{I}_{k}) \in \mathcal{C}_{2}$$
, where
 $\mathbf{A} = (\underbrace{\mathbf{A}_{1}}_{n-2k} \mid \underbrace{\mathbf{A}_{2}}_{k}) \text{ and } \mathbf{B} = (\underbrace{\mathbf{B}_{1}}_{k} \mid \underbrace{\mathbf{B}_{2}}_{n-2k})$, we have
 $d_{S}(\mathcal{U}, \mathcal{V}) = 2 \cdot rank \begin{pmatrix} \mathbf{I}_{k} & \mathbf{A}_{1} & \mathbf{A}_{2} \\ \mathbf{B}_{1} & \mathbf{B}_{2} & \mathbf{I}_{k} \end{pmatrix} - 2k$
 $= 2 \cdot rank \begin{pmatrix} \mathbf{I}_{k} & \mathbf{A}_{1} & \mathbf{A}_{2} \\ \mathbf{O} & \mathbf{B}_{2} - \mathbf{B}_{1}\mathbf{A}_{1} & \mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2} \end{pmatrix} - 2k$
 $= 2 \cdot rank (\mathbf{B}_{2} - \mathbf{B}_{1}\mathbf{A}_{1} & \mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2})$
 $\geq 2 \cdot rank (\mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2})$
 $\geq 2k - 2 \cdot rank (\mathbf{B}_{1}\mathbf{A}_{2})$

For any
$$\mathcal{U} = \operatorname{rowspace}(\mathbf{I}_{k} \mid \mathbf{A}) \in \mathcal{C}_{1} \text{ and } \mathcal{V} = \operatorname{rowspace}(\mathbf{B} \mid \mathbf{I}_{k}) \in \mathcal{C}_{2}$$
, where
 $\mathbf{A} = (\underbrace{\mathbf{A}_{1}}_{n-2k} \mid \underbrace{\mathbf{A}_{2}}_{k}) \text{ and } \mathbf{B} = (\underbrace{\mathbf{B}_{1}}_{k} \mid \underbrace{\mathbf{B}_{2}}_{n-2k})$, we have
 $d_{S}(\mathcal{U}, \mathcal{V}) = 2 \cdot \operatorname{rank} \begin{pmatrix} \mathbf{I}_{k} \quad \mathbf{A}_{1} \quad \mathbf{A}_{2} \\ \mathbf{B}_{1} \quad \mathbf{B}_{2} \quad \mathbf{I}_{k} \end{pmatrix} - 2k$
 $= 2 \cdot \operatorname{rank} \begin{pmatrix} \mathbf{I}_{k} \quad \mathbf{A}_{1} \quad \mathbf{A}_{2} \\ \mathbf{O} \quad \mathbf{B}_{2} - \mathbf{B}_{1}\mathbf{A}_{1} \quad \mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2} \end{pmatrix} - 2k$
 $= 2 \cdot \operatorname{rank}(\mathbf{B}_{2} - \mathbf{B}_{1}\mathbf{A}_{1} \quad \mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2})$
 $\geq 2 \cdot \operatorname{rank}(\mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2})$
 $\geq 2k - 2 \cdot \operatorname{rank}(\mathbf{B}_{1}\mathbf{A}_{2})$
 $\geq 2k - 2 \cdot \operatorname{rank}(\mathbf{B}_{1}\mathbf{A}_{2})$

For any
$$\mathcal{U} = \operatorname{rowspace}(\mathbf{I}_{k} \mid \mathbf{A}) \in \mathcal{C}_{1} \text{ and } \mathcal{V} = \operatorname{rowspace}(\mathbf{B} \mid \mathbf{I}_{k}) \in \mathcal{C}_{2}$$
, where
 $\mathbf{A} = (\underbrace{\mathbf{A}_{1}}_{n-2k} \mid \underbrace{\mathbf{A}_{2}}_{k}) \text{ and } \mathbf{B} = (\underbrace{\mathbf{B}_{1}}_{k} \mid \underbrace{\mathbf{B}_{2}}_{n-2k})$, we have
 $d_{S}(\mathcal{U}, \mathcal{V}) = 2 \cdot \operatorname{rank} \begin{pmatrix} \mathbf{I}_{k} \quad \mathbf{A}_{1} \quad \mathbf{A}_{2} \\ \mathbf{B}_{1} \quad \mathbf{B}_{2} \quad \mathbf{I}_{k} \end{pmatrix} - 2k$
 $= 2 \cdot \operatorname{rank} \begin{pmatrix} \mathbf{I}_{k} \quad \mathbf{A}_{1} \quad \mathbf{A}_{2} \\ \mathbf{O} \quad \mathbf{B}_{2} - \mathbf{B}_{1}\mathbf{A}_{1} \quad \mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2} \end{pmatrix} - 2k$
 $= 2 \cdot \operatorname{rank}(\mathbf{B}_{2} - \mathbf{B}_{1}\mathbf{A}_{1} \quad \mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2})$
 $\geq 2 \cdot \operatorname{rank}(\mathbf{B}_{2} - \mathbf{B}_{1}\mathbf{A}_{1} \mid \mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2})$
 $\geq 2k - 2 \cdot \operatorname{rank}(\mathbf{B}_{1}\mathbf{A}_{2})$
 $\geq 2k - 2 \cdot \operatorname{rank}(\mathbf{B}_{1})$
 $\geq 2k - 2 \cdot \operatorname{rank}(\mathbf{B})$

For any
$$\mathcal{U} = \operatorname{rowspace}(\mathbf{I}_{k} \mid \mathbf{A}) \in \mathcal{C}_{1} \text{ and } \mathcal{V} = \operatorname{rowspace}(\mathbf{B} \mid \mathbf{I}_{k}) \in \mathcal{C}_{2}$$
, where
 $\mathbf{A} = (\underbrace{\mathbf{A}_{1}}_{n-2k} \mid \underbrace{\mathbf{A}_{2}}_{k}) \text{ and } \mathbf{B} = (\underbrace{\mathbf{B}_{1}}_{k} \mid \underbrace{\mathbf{B}_{2}}_{n-2k})$, we have
 $d_{S}(\mathcal{U}, \mathcal{V}) = 2 \cdot \operatorname{rank} \begin{pmatrix} \mathbf{I}_{k} \quad \mathbf{A}_{1} \quad \mathbf{A}_{2} \\ \mathbf{B}_{1} \quad \mathbf{B}_{2} \quad \mathbf{I}_{k} \end{pmatrix} - 2k$
 $= 2 \cdot \operatorname{rank} \begin{pmatrix} \mathbf{I}_{k} \quad \mathbf{A}_{1} \quad \mathbf{A}_{2} \\ \mathbf{O} \quad \mathbf{B}_{2} - \mathbf{B}_{1}\mathbf{A}_{1} \quad \mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2} \end{pmatrix} - 2k$
 $= 2 \cdot \operatorname{rank}(\mathbf{B}_{2} - \mathbf{B}_{1}\mathbf{A}_{1} \quad \mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2})$
 $\geq 2 \cdot \operatorname{rank}(\mathbf{B}_{2} - \mathbf{B}_{1}\mathbf{A}_{1} \mid \mathbf{I}_{k} - \mathbf{B}_{1}\mathbf{A}_{2})$
 $\geq 2k - 2 \cdot \operatorname{rank}(\mathbf{B}_{1}\mathbf{A}_{2})$
 $\geq 2k - 2 \cdot \operatorname{rank}(\mathbf{B}_{1}\mathbf{A}_{2})$
 $\geq 2k - 2 \cdot \operatorname{rank}(\mathbf{B}_{1})$
 $\geq 2k - 2 \cdot \operatorname{rank}(\mathbf{B}) \geq 2\delta$.

Lower bound for GRMCs

Given m, n, K and δ , denote by $A_q^R(m \times n, \delta, K)$ the maximum number of codewords among all $(m \times n, \delta, K)_q$ -GRMCs.

Theorem [Liu, Chang, F., 2019+]

Let $m \ge n$ and $1 \le \delta \le n$. Let t_1 be a nonnegative integer and t_2 be a positive integer such that $t_1 \le t_2 \le n$. Then

$$A_{q}^{R}(m \times n, \delta, [t_{1}, t_{2}]) \geq \begin{cases} \sum_{i=t_{1}}^{t_{2}} A_{i}(\delta), & t_{2} \geq \delta; \\ \\ \max_{\max\{1, t_{1}\} \leq a < \delta} \{ \lceil \frac{\sum_{i=\max\{1, t_{1}\}}^{t_{2}} A_{i}(a)}{q^{m(\delta-a)} - 1} \rceil \}, & t_{2} < \delta, \end{cases}$$

where $A_i(x)$ denotes the number of codewords with rank i in an ${\rm MRD}[m\times n,x]_q$ code.

Lower bound for GRMCs

Given m, n, K and δ , denote by $A_q^R(m \times n, \delta, K)$ the maximum number of codewords among all $(m \times n, \delta, K)_q$ -GRMCs.

Theorem [Liu, Chang, F., 2019+]

Let $m \ge n$ and $1 \le \delta \le n$. Let t_1 be a nonnegative integer and t_2 be a positive integer such that $t_1 \le t_2 \le n$. Then

$$A_{q}^{R}(m \times n, \delta, [t_{1}, t_{2}]) \geq \begin{cases} \sum_{i=t_{1}}^{t_{2}} A_{i}(\delta), & t_{2} \geq \delta; \\ \\ \max_{\max\{1, t_{1}\} \leq a < \delta} \{ \lceil \frac{\sum_{i=\max\{1, t_{1}\}}^{t_{2}} A_{i}(a)}{q^{m(\delta-a)} - 1} \rceil \}, & t_{2} < \delta, \end{cases}$$

where $A_i(x)$ denotes the number of codewords with rank i in an ${\rm MRD}[m\times n,x]_q$ code.

Lower bound for CDCs

Theorem [Liu, Chang, F., 2019+] Let $n \ge 2k > 2\delta > 0$. Then

$$A_q(n, 2\delta, k) \ge q^{(n-k)(k-\delta+1)} + \begin{cases} \sum_{i=\delta}^{k-\delta} A_i(\delta) + 1, & k \ge 2\delta; \\ \max_{1 \le a < \delta} \{\lceil \frac{\sum_{i=1}^{k-\delta} A_i(a)}{q^{m(\delta-a)} - 1} \rceil\}, & k < 2\delta, \end{cases}$$

where $A_i(x)$ denotes the number of codewords with rank i in an ${\rm MRD}[m\times n,x]_q$ code.

Remarks

When $K = \{t\}$ for $0 \le t \le n$, an $(m \times n, M, \delta, K)_q$ -GRMC is often called a constant-rank code ^a.

^aM. Gadouleau and Z. Yan, Constant-rank codes and their connection to constant-dimension codes, *IEEE Trans. Inform. Theory*, 56 (2010), 3207–3216.

Remarks

Using multilevel constructions and parallel constructions simultaneously, we can produce some CDCs with large size. Here we just show one example.

Theorem [Liu, Chang, F., 2019+] For $\delta \geq 2$,

$$q^{2\delta(\delta+1)} + (q^{2\delta} - 1) \begin{bmatrix} 2\delta \\ \delta \end{bmatrix}_q + q^{(\lfloor \frac{\delta}{2} \rfloor + 1)\delta} + q^{\delta} + 1 \le A_q(4\delta, \ 2\delta, \ 2\delta) \le q^{2\delta(\delta+1)} + (q^{2\delta} + q^{\delta}) \begin{bmatrix} 2\delta \\ \delta \end{bmatrix}_q + 1.$$

• For $\delta \geq 3$,

 $\frac{the \ lower \ bound}{the \ upper \ bound} > 0.999260.$

36/71

Outline

2 Constructions for CDCs

- Lifted maximum rank distance codes
- Lifted Ferrers diagram rank-metric codes
- Parallel constructions
- Summary Working points
- 3 Constructions for FDRM codes
 - Preliminaries
 - Via different representations of elements of a finite field
 - Based on Subcodes of MRD Codes
 - New FDRM codes from old

Summary - Working points

- Show more lower bounds and upper bounds on $(m \times n, \delta, K)_q$ rank metric code with given ranks (GRMC).
- Observe the same time efficiently?
 Output the same time efficiently?
- I How to choose identifying vectors?
- Establish constructions for Ferrers diagram rank-metric (FDRM) codes.

References on FDRM codes

- T. Etzion, N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, *IEEE Trans. Inf. Theory*, 55 (2009), 2909–2919.
- 2 T. Etzion, E. Gorla, A. Ravagnani, A. Wachter-Zeh, Optimal Ferrers diagram rank-metric codes, *IEEE Trans. Inf. Theory*, 62 (2016), 1616–1630.
- T. Zhang, G. Ge, Constructions of optimal Ferrers diagram rank metric codes, *Des. Codes Cryptogr.*, 87 (2019), 107–121.
- S. Liu, Y. Chang, T. Feng, Constructions for optimal Ferrers diagram rank-metric codes, *IEEE Trans. Inf. Theory*, 65 (2019), 4115–4130.
- S. Liu, Y. Chang, T. Feng, Several classes of optimal Ferrers diagram rank-metric codes, *Linear Algebra Appl.*, 581 (2019), 128–144.
- J. Antrobus, H. Gluesing-Luerssen, Maximal Ferrers diagram codes: constructions and genericity considerations, *IEEE Trans. Inf. Theory*, DOI 10.1109/TIT.2019.2926256.
- T. Randrianarisoa, R. Pratihar, On some automorphisms of rational functions and their applications in rank metric codes, arXiv:1907.05508v2.oac

Outline

Background and Definitions

- 2 Constructions for CDCs
 - Lifted maximum rank distance codes
 - Lifted Ferrers diagram rank-metric codes
 - Parallel constructions
 - Summary Working points

3 Constructions for FDRM codes

Preliminaries

- Via different representations of elements of a finite field
- Based on Subcodes of MRD Codes
- New FDRM codes from old

Upper bound on the size of FDRM codes

Theorem [Etzion and Silberstein, 2009]

Let δ be a positive integer and ${\cal F}$ be a Ferrers diagram. An $[{\cal F},k,\delta]_q$ code satisfies

$$k \le \min_{0 \le i \le \delta - 1} v_i,$$

where v_i is the number of dots in \mathcal{F} which are not contained in the first i rows and the rightmost $\delta - 1 - i$ columns.

• An FDRM code which attains the upper bound is called *optimal*.

Example

For $0 \le i \le \delta - 1$, v_i is the number of dots in \mathcal{F} which are not contained in the first *i* rows and the rightmost $\delta - 1 - i$ columns.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 ののの

Recall: MRD codes

Singleton-like upper bound for MRD codes

Any rank-metric codes $[m \times n, k, \delta]_q$ code satisfies that

 $k \le \max\{m, n\}(\min\{m, n\} - \delta + 1).$

When the equality holds, C is called a *linear maximum rank distance code*, denoted by an MRD $[m \times n, \delta]_q$ code. Linear MRD codes exists for all feasible parameters.

Conjecture

Conjecture

For every $m \times n$ -Ferrers diagram \mathcal{F} , every finite field \mathbb{F}_q , and every $\delta \leq min\{m,n\}$, there exists an optimal $[\mathcal{F},k,\delta]_q$ code.

Remark

- The upper bound still holds for FDRM codes defined on any field.
- For algebraically closed field the bound sometimes cannot be attained ³.
- This talk only focuses on finite fields.

³E. Gorla and A. Ravagnani, Subspace codes from Ferrers diagrams, *J. Algebra and its Appl.*, 16 (2017), 1750131.

The cases of $\delta = 1, 2, 3$

Theorem

- For any \mathcal{F} , there exists an optimal $[\mathcal{F}, k, 1]_q$ codes, which is trivial.
- For any \mathcal{F} , there exists an optimal $[\mathcal{F}, k, 2]_q$ codes^a;
- For any square \mathcal{F} , there exists an optimal $[\mathcal{F}, k, 3]_q$ codes^b.

^aT. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, *IEEE Trans. Inf. Theory*, 55 (2009), 2909–2919.

^bT. Etzion, E. Gorla, A. Ravagnani and A. Wachter-Zeh, Optimal Ferrers diagram rank-metric codes, *IEEE Trans. Inf. Theory*, 62 (2016), 1616–1630.

Upper triangular shape with $\delta = n - 1$

Theorem

 Let n ≥ 3. Assume F = [1, 2, ..., n] is an n × n Ferrers diagram. There exists an optimal [F, 3, n − 1]_q code for any prime power q^a.

^aJ. Antrobus and H. Gluesing-Luerssen, Maximal Ferrers diagram codes: constructions and genericity considerations, arXiv:1804.00624v1.

Outline

Background and Definitions

- 2 Constructions for CDCs
 - Lifted maximum rank distance codes
 - Lifted Ferrers diagram rank-metric codes
 - Parallel constructions
 - Summary Working points

3 Constructions for FDRM codes

- Preliminaries
- Via different representations of elements of a finite field
- Based on Subcodes of MRD Codes
- New FDRM codes from old

Vector representation

• Let $\beta = (\beta_0, \beta_1, \dots, \beta_{m-1})$ be an ordered basis of \mathbb{F}_{q^m} over \mathbb{F}_q .

There is a natural bijective map
$$\Psi_m$$
 from \mathbb{F}_q^m to $\mathbb{F}_q^{m \times n}$ as follows:

$$\Psi_m: \mathbb{F}_{q^m}^n \longrightarrow \mathbb{F}_q^{m \times n}$$
$$\mathbf{a} = (a_0, a_1, \dots, a_{n-1}) \longmapsto \mathbf{A},$$

where $\mathbf{A}=\Psi_m(\mathbf{a})\in\mathbb{F}_q^{m\times n}$ is defined such that for any $0\leq j\leq n-1$

$$a_j = \sum_{i=0}^{m-1} A_{i,j} \beta_i.$$

- For $a \in \mathbb{F}_{q^m}$, write $\Psi_m((a))$ as $\Psi_m(a)$.
- Ψ_m satisfies linearity, i.e., $\Psi_m(xa_1 + ya_2) = x\Psi_m(a_1) + y\Psi_m(a_2)$ for any $x, y \in \mathbb{F}_q$ and $a_1, a_2 \in \mathbb{F}_{q^m}^n$.

Theorem [Zhang, Ge, DCC, 2019]

If there exists an $[\mathcal{F}, k, \delta]_{q^m}$ code, where $\mathcal{F} = [\gamma_0, \gamma_1, \dots, \gamma_{n-1}]$, then there exists an $[\mathcal{F}', mk, \delta]_q$ code, where $\mathcal{F}' = [m\gamma_0, m\gamma_1, \dots, m\gamma_{n-1}]$.

Matrix representation

Let $g(x) = x^m + g_{m-1}x^{m-1} + \cdots + g_1x + g_0 \in \mathbb{F}_q[x]$ be a primitive polynomial over \mathbb{F}_q , whose companion matrix is

$$G = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -g_0 \\ 1 & 0 & 0 & \cdots & 0 & -g_1 \\ 0 & 1 & 0 & \cdots & 0 & -g_2 \\ 0 & 0 & 1 & \cdots & 0 & -g_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -g_{m-1} \end{pmatrix}$$

By the Cayley-Hamilton theorem in linear algebra, G is a root of g(x). The set $\mathcal{A} = \{ \mathbf{G}^i : 0 \le i \le q^m - 2 \} \cup \{ \mathbf{0} \}$ equipped with the matrix addition and the matrix multiplication is isomorphic to \mathbb{F}_{q^m} .

Matrix representation

Theorem [Liu, Chang, F., LAA, 2019]

If there exists an $[\mathcal{F}, k, \delta]_{q^m}$ code, where $\mathcal{F} = [\gamma_0, \gamma_1, \dots, \gamma_{n-1}]$, then there exists an $[\mathcal{F}', mk, m\delta]_q$ code, where

Example

If there exists an optimal $[\mathcal{F}, \gamma_0, n]_{q^m}$ code $\mathcal{F} = [\gamma_0, \gamma_1, \dots, \gamma_{n-1}]$, then there exists an optimal $[\mathcal{F}', m\gamma_0, mn]_q$ code, where

$$\mathcal{F}' = [\underbrace{m\gamma_0, \dots, m\gamma_0}_{m}, \underbrace{m\gamma_1, \dots, m\gamma_1}_{m}, \dots, \underbrace{m\gamma_{n-1}, \dots, m\gamma_{n-1}}_{m}].$$

Outline

2 Constructions for CDCs

- Lifted maximum rank distance codes
- Lifted Ferrers diagram rank-metric codes
- Parallel constructions
- Summary Working points

3 Constructions for FDRM codes

- Preliminaries
- Via different representations of elements of a finite field
- Based on Subcodes of MRD Codes
- New FDRM codes from old

Basic idea

Basic lemma

Let $m \ge n$ and $0 \le \lambda_0 \le \lambda_1 \le \cdots \le \lambda_{\kappa-1} \le m$.

• Let **G** be a generator matrix of a systematic $MRD[m \times n, \delta]_q$ code, i.e., **G** is of the form $(\mathbf{I}_{\kappa}|\mathbf{A})$, where $\kappa = n - \delta + 1$.

• Let
$$\mathbf{U} = \{(u_0, \dots, u_{\kappa-1}) \in \mathbb{F}_{q^m}^{\kappa} :$$

 $\Psi_m(u_i) = (u_{i,0}, \dots, u_{i,\lambda_i-1}, 0, \dots, 0)^T, u_{i,j} \in \mathbb{F}_q, i \in [\kappa], j \in [\lambda_i]\}.$
Then $\mathcal{C} = \{\Psi_m(\mathbf{c}) : \mathbf{c} = \mathbf{uG}, \mathbf{u} \in \mathbf{U}\}$ is an optimal $[\mathcal{F}, \sum_{i=0}^{k-1} \lambda_i, \delta]_q$ code, where $\mathcal{F} = [\gamma_0, \gamma_1, \dots, \gamma_{n-1}]$ satisfies $\gamma_i = \lambda_i$ for each $i \in [k]$ and $\gamma_i = m$

for $k \leq i \leq n-1$.

Example

Theorem A [Etzion and Silberstein, 2009] Let $m \ge n$. If \mathcal{F} is an $m \times n$ Ferrers diagram and

 $\gamma_{n-\delta+1} \ge m,$

i.e., each of the rightmost $\delta - 1$ columns of \mathcal{F} has at least m dots, then there exists an optimal $[\mathcal{F}, k, \delta]_q$ code for any prime power q, where $k = \sum_{i=0}^{n-\delta} \gamma_i$.

• As a corollary, for any \mathcal{F} , there exists an optimal $[\mathcal{F}, k, 2]_q$ codes.

Improved example

Theorem B [Etzion, Gorla, Ravagnani, Wachter-Zeh, 2016] If \mathcal{F} is an $m \times n$ Ferrers diagram and

 $\gamma_{n-\delta+1} \ge n,$

i.e., each of the rightmost $\delta - 1$ columns of \mathcal{F} has at least n dots, then there exists an optimal $[\mathcal{F}, k, \delta]_q$ code for any prime power q, where $k = \sum_{i=0}^{n-\delta} \gamma_i$.

• To prove it, truncate \mathcal{F} to a $\max\{\gamma_{n-\delta}, n\} \times n$ Ferrers diagram. Then use Theorem A.

Remarks

- Basic Lemma can only be used to construct optimal FDRM codes satisfying $v_0 = \sum_{i=0}^{n-\delta} \gamma_i \leq \min_{i \in [\delta]} v_i$, where v_i is the number of dots in \mathcal{F} which are not contained in the first *i* rows and the rightmost $\delta - 1 - i$ columns.
- Basic Lemma only gives details of the leftmost k columns of the Ferrers diagram used for codewords in C. However, if we could know more about the initial systematic MRD code, then it would be possible to give a complete characterization of C.

A class of systematic MRD codes

Lemma [Antrobus and Gluesing-Luerssen, IEEE IT, to appear]

Let $m \ge n \ge \delta \ge 2$ and $k = n - \delta + 1$. Let q be any prime power. Let $a_1, a_2, \ldots, a_k \in \mathbb{F}_{q^m}$ satisfying that $1, a_1, a_2, \ldots, a_k$ are \mathbb{F}_q -linearly independent.

• Then there exists a matrix $A \in \mathbb{F}_{q^m}^{k \times (n-k)}$ such that its first column is given by $(a_1, a_2, \ldots, a_k)^T$ and $\mathbf{G} = (\mathbf{I}_k | \mathbf{A})$ is a generator matrix of a systematic MRD $[m \times n, \delta]_q$ code.

A class of optimal FDRM codes

Theorem [Liu, Chang, F., LAA, 2019]

Let $m \ge n \ge \delta \ge 2$ and $k = n - \delta + 1$. If an $m \times n$ Ferrers diagram \mathcal{F} satisfies

(1)
$$\gamma_k \ge n \text{ or } \gamma_k - k \ge \gamma_i - i \text{ for each } i = 0, 1, \dots, k-1,$$

(2) $\gamma_{k+1} \ge n,$

then there exists an optimal $[\mathcal{F}, \sum_{i=0}^{k-1} \gamma_i, \delta]_q$ code for any prime power q.

This theorem requires each of the rightmost $\delta - 2$ columns of \mathcal{F} has at least n dots and relaxes the condition on the $(\delta - 1)$ -th column from the right end.

A class of square optimal FDRM codes with $\delta = 4$

Corollary [Liu, Chang, F., LAA, 2019]

Let

$$\mathcal{F} = [2, 2, \gamma_2, \dots, \gamma_{n-4}, n-1, n, n]$$

be an $n \times n$ Ferrers diagram, where $\gamma_i \leq i+2$ for $2 \leq i \leq n-4$. Then there exists an optimal $[\mathcal{F}, \sum_{i=2}^{n-4} \gamma_i + 4, 4]_a$ code for any integer $n \geq 6$ and any prime power q.

Another class of systematic MRD codes

Lemma [Liu, Chang, F., LAA, 2019]

Let η, r, d, κ and μ be positive integers such that $\kappa = \eta - r - d + 1$, $r < \kappa$ and $\eta \leq \mu + r$. Then there exists a matrix $\mathbf{G} \in \mathbb{F}_{a^{\mu}}^{\kappa \times \eta}$ of the following form

(1	$\alpha_{0,\kappa}$		$\alpha_{0,\eta-r-1}$	0	0		0)
1	$\alpha_{1,\kappa}$	• • •	$\alpha_{1,\eta-r-1}$	$\alpha_{1,\eta-r}$	0	• • •	0
•	:	•	:	:	:	۰.	:
1	$\alpha_{r-1,\kappa}$		$\alpha_{r-1,\eta-r-1}$	$\alpha_{r-1,\eta-r}$	$\alpha_{r-1,\eta-r+1}$		0
1	$\alpha_{r,\kappa}$	•••	$\alpha_{r,\eta-r-1}$	$\alpha_{r,\eta-r}$	$\alpha_{r,\eta-r+1}$	• • •	$\alpha_{r,\eta-1}$
	:	•	:	:	:	۰.	:
1	$\alpha_{\kappa-1,\kappa}$		$\alpha_{\kappa-1,\eta-r-1}$	$\alpha_{\kappa-1,\eta-r}$	$\alpha_{\kappa-1,\eta-r+1}$		$\left(\alpha_{\kappa-1,\eta-1}\right)$

satisfying that for each $0 \le i \le r$, the sub-matrix obtained by removing the first *i* rows, the leftmost *i* columns and the rightmost r - i columns of **G** can produce an MRD[$\mu \times (\eta - r), d + i$]_q code.
Restricted Gabidulin codes

For any positive integer i and any $a \in \mathbb{F}_{q^m}$, set $a^{[i]} \triangleq a^{q^i}$.

Gabidulin code

Let $m \ge n$ and q be any prime power. A Gabidulin code $\mathcal{G}[m \times n, \delta]_q$ is an $MRD[m \times n, \delta]_q$ code whose generator matrix **G** in vector representation is

$$\mathbf{G} = \begin{pmatrix} g_0 & g_1 & \cdots & g_{n-1} \\ g_0^{[1]} & g_1^{[1]} & \cdots & g_{n-1}^{[1]} \\ \vdots & \vdots & \ddots & \vdots \\ g_0^{[n-\delta]} & g_1^{[n-\delta]} & \cdots & g_{n-1}^{[n-\delta]} \end{pmatrix},$$

where $g_0, g_1, \ldots, g_{n-1} \in \mathbb{F}_{q^m}$ are linearly independent over \mathbb{F}_q .

A class of optimal FDRM codes

Theorem [Liu, Chang, F., LAA, 2019]

Let l be a positive integer. Let $1 = t_0 < t_1 < t_2 < \cdots < t_l$ be integers such that $t_1 \mid t_2 \mid \cdots \mid t_l$. Let $t_2 = t_1s_2$. Let r be a nonnegative integer and δ , n, k be positive integers satisfying $r + 1 \leq \delta \leq n - r$, $t_{l-1} < n - r \leq t_l$, $k = n - \delta + 1$ and $k \leq t_1$. Let $\mathcal{F} = [\gamma_0, \gamma_1, \ldots, \gamma_{n-1}]$ be an $m \times n$ Ferrers diagram $(m = \gamma_{n-1})$ satisfying

(1)
$$\gamma_{k-1} \leq wt_1$$
,
(2) $\gamma_k \geq wt_1$ for $k < t_1$ and $\delta \geq 2$,
(3) $\gamma_{t_{\theta}} \geq t_{\theta+1}$ for $1 \leq \theta \leq l-1$,
(4) $\gamma_{n-r+h} \geq t_l + \sum_{j=0}^{h} \gamma_j$ for $0 \leq h \leq r-1$,
where $w = 1$ if $l = 1$, and $w \in \{1, 2, \dots, s_2\}$ if $l \geq 2$. Then there exists an
optimal $[\mathcal{F}, \sum_{i=0}^{k-1} \gamma_i, \delta]_q$ code for any prime power q .

Corollaries

Corollaries

- (1) Take l = 1, r = 0 and $t_1 = n \le m$. Then Theorem 3 in [Etzion, Gorla, Ravagnani, Wachter-Zeh, 2016] is obtained.
- (2) Take l = 1, r = 1 and $t_1 = n r$. Then Theorem 8 in [Etzion, Gorla, Ravagnani, Wachter-Zeh, 2016] is obtained.
- (3) Take w = 1 and r = 0. Then Theorem 3.2 in [Zhang, Ge, DCC, 2019], which requires each of the first k columns of F contains at most t₁ dots. Here the theorem relaxes this restriction condition and requires each of the first k columns of F contains at most t₂ dots.
- (4) Take w = 1 and r = 1. Theorem 3.6 in [Zhang, Ge, DCC, 2019] is obtained.

Outline

Background and Definitions

2 Constructions for CDCs

- Lifted maximum rank distance codes
- Lifted Ferrers diagram rank-metric codes
- Parallel constructions
- Summary Working points

3 Constructions for FDRM codes

- Preliminaries
- Via different representations of elements of a finite field
- Based on Subcodes of MRD Codes

New FDRM codes from old

New Ferrers diagram rank-metric codes from old

Construction A [Liu, Chang, F., IEEE IT, 2019]

Let \mathcal{F}_i for i = 1, 2 be an $m_i \times n_i$ Ferrers diagram, and \mathcal{C}_i be an $[\mathcal{F}_i, k_1, \delta_i]_q$ code. Let \mathcal{D} be an $m_3 \times n_3$ Ferrers diagram and \mathcal{C}_3 be a $[\mathcal{D}, k_2, \delta]_q$ code, where $m_3 \ge m_1$ and $n_3 \ge n_2$. Let $m = m_2 + m_3$ and $n = n_1 + n_3$. Let

$$\mathcal{F} = \left(egin{array}{cc} \mathcal{F}_1 & \hat{\mathcal{D}} \ & \mathcal{F}_2 \end{array}
ight)$$

be an $m \times n$ Ferrers diagram \mathcal{F} , where $\hat{\mathcal{D}}$ is obtained by adding the fewest number of new dots to the lower-left corner of \mathcal{D} such that \mathcal{F} is a Ferrers diagram. Then there exists an $[\mathcal{F}, k_1 + k_2, \min\{\delta_1 + \delta_2, \delta\}]_q$ code.

To obtain optimal FDRM codes, it is often required that C_3 is an optimal $[\mathcal{D}, k_2, \delta]_q$ code. If the optimality of C_3 is unknown, then what shall we do?

New Ferrers diagram rank-metric codes from old

Construction A [Liu, Chang, F., IEEE IT, 2019]

Let \mathcal{F}_i for i = 1, 2 be an $m_i \times n_i$ Ferrers diagram, and \mathcal{C}_i be an $[\mathcal{F}_i, k_1, \delta_i]_q$ code. Let \mathcal{D} be an $m_3 \times n_3$ Ferrers diagram and \mathcal{C}_3 be a $[\mathcal{D}, k_2, \delta]_q$ code, where $m_3 \ge m_1$ and $n_3 \ge n_2$. Let $m = m_2 + m_3$ and $n = n_1 + n_3$. Let

$${\cal F}=\left(egin{array}{cc} {\cal F}_1 & \hat{\cal D} \ & {\cal F}_2 \end{array}
ight)$$

be an $m \times n$ Ferrers diagram \mathcal{F} , where $\hat{\mathcal{D}}$ is obtained by adding the fewest number of new dots to the lower-left corner of \mathcal{D} such that \mathcal{F} is a Ferrers diagram. Then there exists an $[\mathcal{F}, k_1 + k_2, \min\{\delta_1 + \delta_2, \delta\}]_q$ code.

A natural idea is to remove a sub-diagram from \mathcal{D} to obtain a new Ferrers diagram \mathcal{D}' such that the FDRM code in \mathcal{D}' is optimal, and then mix the removed sub-diagram to \mathcal{F}_1 or \mathcal{F}_2 .

Example: optimal $[\mathcal{F}, 10, 4]_q$ code

66/71

Example: optimal $[\mathcal{F}, 10, 4]_q$ code

Take a proper combination \mathcal{F}_{12} of \mathcal{F}_1 and \mathcal{F}_2 as follows

Now construct a new Ferrers diagram

$$\mathcal{F}^* = \left(\begin{array}{cc} \mathcal{F}_{12} & \mathcal{F}_4 \\ & \mathcal{F}_3 \end{array}\right).$$

By Construction A, we have an $[\mathcal{F}^*, 10, 4]_q$ code \mathcal{C}^* for any prime power q, where an optimal $[\mathcal{F}_{12}, 3, 3]_q$ code \mathcal{C}_{12} exists, an optimal $[\mathcal{F}_4, 7, 4]_q$ code \mathcal{C}_4 exists and an optimal $[\mathcal{F}_3, 3, 1]_q$ code \mathcal{C}_3 is trivial. Note that the above procedure from \mathcal{F} to \mathcal{F}^* yields a natural bijection from \mathcal{F} to F^* .

Proper combination of Ferrers diagrams

Let \mathcal{F}_1 be an $m_1 \times n_1$ Ferrers diagram, \mathcal{F}_2 be an $m_2 \times n_2$ Ferrers diagram and \mathcal{F} be an $m \times n$ Ferrers diagram. Let ϕ_l for $l \in \{1, 2\}$ be an injection from \mathcal{F}_l to \mathcal{F} (in the sense of set-theoretical language). \mathcal{F} is said to be a *proper combination* of \mathcal{F}_1 and \mathcal{F}_2 on a pair of mappings ϕ_1 and ϕ_2 , if

•
$$\phi_1(\mathcal{F}_1) \cap \phi_2(\mathcal{F}_2) = \emptyset;$$

- $|\mathcal{F}_1| + |\mathcal{F}_2| = |\mathcal{F}|;$
- for any $l \in \{1,2\}$ and any two different elements $(i_{l,1}, j_{l,1})$, $(i_{l,2}, j_{l,2})$ of \mathcal{F}_l , set $\phi_l(i_{l,1}, j_{l,1}) = (i'_{l,1}, j'_{l,1})$ and $\phi_l(i_{l,2}, j_{l,2}) = (i'_{l,2}, j'_{l,2})$; $i'_{l,1} = i'_{l,2}$ or $j'_{l,1} = j'_{l,2}$ whenever $i_{l,1} = i_{l,2}$ or $j_{l,1} = j_{l,2}$.

Condition (3) means that if two dots in \mathcal{F}_l for $l \in \{1, 2\}$ are in the same row or same column, then their corresponding two dots in \mathcal{F} are also in the same row or same column.

Construction B

Let

be an $m \times n$ Ferrers diagram, where \mathcal{F}_i is an $m_i \times n_i$ Ferrers sub-diagram, $1 \leq i \leq 4$, satisfying that $m = m_3 + m_4$, $n = n_1 + n_4$, $m_4 \geq m_1 + m_2$ and $n_4 \geq n_2 + n_3$. Note that the dots "•" in \mathcal{F} have to exist, whereas the dots "o" can exist or not.

Construction B

Construction B [Liu, Chang, F., IEEE IT, 2019]

Suppose that

- \mathcal{F}_{12} is a proper combination of \mathcal{F}_1 and \mathcal{F}_2 , and \mathcal{C}_{12} is an $[\mathcal{F}_{12}, k_1, \delta_1]_q$ code;
- there exist an $[\mathcal{F}_3, k_3, \delta_3]_q$ code \mathcal{C}_3 and an $[\mathcal{F}_4, k_4, \delta_4]_q$ code \mathcal{C}_4 .

Then there exists an $[\mathcal{F}, k, \delta]_q$ code C, where $k = \min\{k_1, k_3\} + k_4$ and $\delta = \min\{\delta_1 + \delta_3, \delta_4\}$.

Thank you for your attention! Questions? Comments?

