Edge conditions on two disjoint cycles in graphs

SHIN－SHIN KAO 高欣欣
CHUNG YUAN CHRISTIAN UNIVERSITY 中原大學
第十屆海峽兩岸圖論與組合數學研討會
AUG．19－23，2019，台中中興大學

Outline

-Introduction

- Terminology and known theorems
-Main results
- Theorem 3
-Conclusion

Introduction-1

A graph $G, G=(V, E)$.
A simple graph is a graph with neither loops nor multiple edges.

$\bar{G}:$

Introduction-1

A graph $G, G=(V, E)$.
A simple graph is a graph with neither loops nor multiple edges.

The complement of a given graph G is denoted by $\bar{G} . \bar{G} \equiv K_{n}-G$.

Introduction-1

A graph $G, G=(V, E)$.
A simple graph is a graph with neither loops nor multiple edges.
The complement of a given graph G is denoted by $\bar{G} . \bar{G} \equiv K_{n}-G$.

G:

The degree of a given vertex u in G is defined by $\operatorname{deg}(u)=|\{v \mid(u, v) \in E\}|$.

The minimum degree of the graph G is defined by $\delta=\min \{\operatorname{deg}(u) \mid u \in V\}$.

Introduction-2

Q: Under which conditions can we decompose a graph into two disjoint cycles with given lengths?

Minimum degree $=\delta=3$;
$4+4$ decomposable;
Not 3+5 decomposable.

Introduction-2

Q: Under which conditions can we decompose a graph into two disjoint cycles with given lengths?

Minimum degree $=\delta=3$;
$4+4$ decomposable;
Not 3+5 decomposable.

Minimum degree $=\delta=4$;
4+4 decomposable; Not 3+5 decomposable.

Introduction-2

Q: Under which conditions can we decompose a graph into two disjoint cycles with given lengths?

Minimum degree $=\delta=3$;
$4+4$ decomposable;
Not 3+5 decomposable.

Minimum degree $=\delta=4$;
$4+4$ decomposable; Not 3+5 decomposable.

Introduction-2

Q: Under which conditions can we decompose a graph into

 two disjoint cycles with given lengths?

Minimum degree= $\delta=3$;
4+4 decomposable;
Not 3+5 decomposable.

Minimum degree= $\delta=4$; 4+4 decomposable;
Not 3+5 decomposable.

Minimum degree $=\delta=5$; 4+4 decomposable; AND 3+5 decomposable.

Introduction-2

Q: Under which conditions can we decompose a graph into

 two disjoint cycles with given lengths?

Minimum degree= $\delta=3$;
4+4 decomposable;
Not 3+5 decomposable.

Minimum degree= $\delta=4$; 4+4 decomposable;
Not 3+5 decomposable.

Minimum degree $=\delta=5$; 4+4 decomposable; AND 3+5 decomposable.

Introduction-3

n1	n2	$\delta(G) \geq\left\lceil\frac{n_{1}}{2}\right\rceil+\left\lceil\frac{n_{2}}{2}\right\rceil$
4	4	4
3	5	5

Theorem 1 (M. H. El-Zahar, 1984, [2]) Let G be a graph with $|G|=n \geq 6$. Let n_{1} and n_{2} be two integers with $n_{i} \geq 3$ for $i=1,2$ and $n_{1}+n_{2}=n$. If $\delta(G) \geq\left\lceil\frac{n_{1}}{2}\right\rceil+\left\lceil\frac{n_{2}}{2}\right\rceil$, then G has two disjoint cycles with lengths n_{1} and n_{2}.

Reference:
[2] M.H. El-Zahar, On circuits in graphs, Discrete Mathematics, Vol. 50, pp. 277-230, 1984.

Introduction-3

Theorem 2 (J. Yan et. al., 2018, [5]) Let G be a graph with $|G|=n \geq 6$. Let n_{1} and n_{2} be two integers with $n_{i} \geq 3$ for $i=1,2$ and $n_{1}+n_{2}=n$. If $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \geq n+4$ for every pair of nonadjacent vertices u and v of G, then G has two disjoint cycles with lengths n_{1} and n_{2}.

Reference:

[5] J. Yan, S. Zhang, Y. Ren and J. Cai, Degree sum conditions on two disjoint cycles in graphs, Information Processing Letters, Vol. 138, pp. 7-11, 2018.

Introduction-3

Theorem 1 (M. H. El-Zahar, 1984, [2]) Let G be a graph with $|G|=n \geq 6$. Let n_{1} and n_{2} be two integers with $n_{i} \geq 3$ for $i=1,2$ and $n_{1}+n_{2}=n$. If $\delta(G) \geq\left\lceil\frac{n_{1}}{2}\right\rceil+\left\lceil\frac{n_{2}}{2}\right\rceil$, then G has two disjoint cycles with lengths n_{1} and n_{2}.
Theorem 2 (J. Yan et. al., 2018, [5]) Let G be a graph with $|G| \mid=n \geq 6$. Let n_{1} and n_{2} be two integers with $n_{i} \geq 3$ for $i=1,2$ and $n_{1}+n_{2}=n$. If $d e g_{G}(u)+\operatorname{deg}_{G}(v) \geq n+4$ for every pair of nonadjacent vertices u and v of G, then G has two disjoint cycles with lengths n_{1} and n_{2}.

Introduction-4

Theorem 6. Let G be a graph with $|G|=n \geq 6$. Let n_{i} be an integer with $n_{i} \geq 3$ for $i=1,2$, and $n_{1}+n_{2}=n$. If $\bar{e}(G) \leq n-3$, then G contains two disjoint cycles with lengths n_{1} and n_{2}.

Introduction-4

Theorem 6. Let G be a graph with $|G|=n \geq 6$. Let n_{i} be an integer with $n_{i} \geq 3$ for $i=1,2$, and $n_{1}+n_{2}=n$. If $\bar{e}(G) \leq n-3$, then G contains two disjoint cycles with lengths n_{1} and n_{2}.

Here $e=|E(G)|, \bar{e}=|E(\bar{G})|$. Obviously, $e+\bar{e}=\frac{n(n-1)}{2}$.

Introduction-4

Theorem 6. Let G be a graph with $|G|=n \geq 6$. Let n_{i} be an integer with $n_{i} \geq 3$ for $i=1,2$, and $n_{1}+n_{2}=n$. If $\bar{e}(G) \leq n-3$, then G contains two disjoint cycles with lengths n_{1} and n_{2}.

Here $e=|E(G)|, \bar{e}=|E(\bar{G})|$. Obviously, $e+\bar{e}=\frac{n(n-1)}{2}$.
Theorem 5. (Hsu et.al., pp. 146, [3]) Let G be a graph with $n \geq 3$ and $\bar{e}(G) \leq n-3$. Then G is hamiltonian. Moreover, the only non-hamiltonian graphs with $\bar{e}(G) \leq n-2$ are $K_{1} \circ K_{1} \circ K_{n-2}$ and $\overline{K_{2}} \circ K_{2} \circ K_{1}$.

Introduction-4

Theorem 6. Let G be a graph with $|G|=n \geq 6$. Let n_{i} be an integer with $n_{i} \geq 3$ for $i=1,2$, and $n_{1}+n_{2}=n$. If $\bar{e}(G) \leq n-3$, then G contains two disjoint cycles with lengths n_{1} and n_{2}.

$$
\text { Here } e=|E(G)|, \bar{e}=|E(\bar{G})| \text {. Obviously, } e+\bar{e}=\frac{n(n-1)}{2} .
$$

Theorem 5. (Hsu et.al., pp. 146, [3]) Let G be a graph with $n \geq 3$ and $\bar{e}(G) \leq n-3$. Then G is hamiltonian. Moreover, the only non-hamiltonian graphs with $\bar{e}(G) \leq n-2$ are $K_{1} \circ K_{1} \circ K_{n-2}$ and $\overline{K_{2}} \circ K_{2} \circ K_{1}$.

Outline

-Introduction

- Terminology and known theorems
-Main results
- Theorem 6
-Conclusion

Theorem 6. Let G be a graph with $|G|=n \geq 6$. Let n_{i} be an integer with $n_{i} \geq 3$ for $i=1,2$, and $n_{1}+n_{2}=n$. If $\bar{e}(G) \leq n-3$, then G contains two disjoint cycles with lengths n_{1} and n_{2}.

Example. n=11. $\quad \bar{e} \leq 8$.

n_{1}	n_{2}	$\bar{e}\left(G_{1}\right)$	$\bar{e}\left(G_{2}\right)$
3	8		
4	7		
5	6		

Theorem 6. Let G be a graph with $|G|=n \geq 6$. Let n_{i} be an integer with $n_{i} \geq 3$ for $i=1,2$, and $n_{1}+n_{2}=n$. If $\bar{e}(G) \leq n-3$, then G contains two disjoint cycles with lengths n_{1} and n_{2}.

Example. $\mathrm{n}=11 . \quad \bar{e} \leq 8$.

n_{1}	n_{2}	$\bar{e}\left(G_{1}\right)$	$\bar{e}\left(G_{2}\right)$
3	8	0	$\leqq 5$
4	7	$\leqq 1$	$\leqq 4$
5	6	$\leqq 2$	\leqq

Theorem 6. Let G be a graph with $|G|=n \geq 6$. Let n_{i} be an integer with $n_{i} \geq 3$ for $i=1,2$, and $n_{1}+n_{2}=n$. If $\bar{e}(G) \leq n-3$, then G contains two disjoint cycles with lengths n_{1} and n_{2}.

Example. $\mathrm{n}=11 . \quad \bar{e} \leq 8$.

n_{1}	n_{2}	$\bar{e}\left(G_{1}\right)$	$\bar{e}\left(G_{2}\right)$
3	8	0	$\leqq 5$
4	7	$\leqq 1$	$\leqq 4$
5	6	$\leqq 2$	$\leqq 3$

Example. $\mathrm{n}=11 . \quad \bar{e} \leq 8$.

Step 1. Given $n_{1}=3$, pick an independent set A_{3} in \bar{G} with 3 vertices such that the degree sum of these vertices is maximum. Let $\mathrm{V}\left(G_{1}\right)=A_{3}$.

Example. $\mathrm{n}=11 . \quad \bar{e} \leq 8$.

Step 1. Given $n_{1}=3$, pick an independent set A_{3} in \bar{G} with 3 vertices such that the degree sum of these vertices is maximum. Let $\mathrm{V}\left(G_{1}\right)=A_{3}$.

$$
\begin{gathered}
\text { Thus } \bar{e}\left(G_{1}\right)=0 \\
\bar{e}\left(G_{2}\right)=0 . \\
=1,
\end{gathered}
$$

Example. $\mathrm{n}=11 . \quad \bar{e} \leq 8$.

Step 2. When $n_{1}=4$, pick an independent set $A_{4}=A_{3} \cup\{x\}$ with $n_{1}=4$ vertices. If A_{3} is already a maximal independent set in \bar{G}, then $A_{4}=A_{3} \cup\{x\}$ where x has the least neighbors in A_{3}. Let $V\left(G_{1}\right)=A_{4}$.

$$
\begin{aligned}
& n_{1}=4 \quad A_{4}=\{1,3,5,11\} \\
& 1 \bullet 2 \\
& 3 \bullet 4 \\
& \text { Thus } \bar{e}\left(G_{1}\right)=1 \text {. } \\
& \bar{e}\left(G_{2}\right)=0 . \\
& \text { => OK. }
\end{aligned}
$$

Example. $\mathrm{n}=11 . \quad \bar{e} \leq 8$.

Step 2. When $n_{1}=5$, if A_{4} is already a maximal independent set in \bar{G}, then $A_{5}=A_{4} \cup\{x\}$ where x has the least neighbors in A_{4}. Let $\mathrm{V}\left(G_{1}\right)=A_{5}$.

```
n}=5\quad\mp@subsup{A}{5}{}={1,2,3,5,11
```


Theorem 6. Let G be a graph with $|G|=n \geq 6$. Let n_{i} be an integer with $n_{i} \geq 3$ for $i=1,2$, and $n_{1}+n_{2}=n$. If $\bar{e}(G) \leq n-3$, then G contains two disjoint cycles with lengths n_{1} and n_{2}.

Example. n=11. $\quad \bar{e} \leq 8$.

n_{1}	n_{2}	$\bar{e}\left(G_{1}\right)$	$\bar{e}\left(G_{2}\right)$
3	8	0	$\leqq 5$
4	7	$\leqq 1$	$\leqq 4$
5	6	$\leqq 2$	$\leqq 3$

\bar{G}

Ex1. $\mathrm{n}=10, \bar{e} \leq 7$.

Step 1. Given $n_{1}=3$, pick an independent set A_{3} in \bar{G} with 3 vertices such that the degree sum of these vertices is maximum. Let $\mathrm{V}\left(G_{1}\right)=A_{3}$.

Ex1. $\mathrm{n}=10, \bar{e} \leq 7$.

Complement(G)
Step 1. Given $n_{1}=3$, pick an independent set A_{3} in \bar{G} with 3 vertices such that the degree sum of these vertices is maximum. Let $\mathrm{V}\left(G_{1}\right)=A_{3}$.

$$
n_{1}=3 \quad A_{3}=\{1,5,8\}
$$

Ex1. $\mathrm{n}=10, \bar{e} \leq 7$.

Step 2. When $n_{1}=4$, pick an independent set $A_{4}=A_{3} \cup\{x\}$ with $n_{1}=4$ vertices. If A_{3} is already a maximal independent set in \bar{G}, then $A_{4}=A_{3} \cup\{x\}$ where x has the least neighbors in A_{3}. Let $V\left(G_{1}\right)=A_{4}$.

Complement(G)

Ex1. n=10. $\operatorname{ebar(G)<=6}$

Step 2 . When $n_{1}=5$, if A_{4} is already a maximal independent set in \bar{G}, then $A_{5}=A_{4} \cup\{x\}$ where x has the least neighbors in A_{4}. Let $\mathrm{V}\left(G_{1}\right)=A_{5}$.

Outline

-Introduction

- Terminology and known theorems

-Main results

- Theorem 3
-Conclusion

EX. $\mathrm{n}=11 . e(\bar{G}) \leqq 8$

Theorem 6. Let G be a graph with $|G|=n \geq 6$. Let n_{i} be an integer with $n_{i} \geq 3$ for $i=1,2$, and $n_{1}+n_{2}=n$. If $\bar{e}(G) \leq n-3$, then G contains two disjoint cycles with lengths n_{1} and n_{2}.

Cor. Let G be a graph with $|G|=n \geq 6$. Let $k \geq 2$ be an integer. Let $1 \leq i \leq k$ be an integer, n_{i} be an integer with $n_{i} \geq 3$, and $\sum_{i=1}^{k} n_{i}=n$. If $\bar{e}(G) \leq n-3$, then G contains k disjoint cycles with length n_{i}.

Conclusion

With our theorem, we not only guarantee the existence of the two cycle decomposition of G, but also give the structure of the two subgraphs G_{1} and G_{2} and the required cycles.
As a result, our theorem outperforms THM 1 and THM 2 if edges of \bar{G} are connected to a small number of vertices, where δ drops quickly and G has a wide spectrum of vertex degrees. However, THM 1 and THM 2 could perform better when the edges in \bar{G} are more scattered such that the degree distribution of G is in better tune. Such a conclusion is true for general graphs with the total number of vertices $n \geq 6$.

\sim the $\mathcal{F i n c}_{\text {n }} \sim$

Thank you very much!

