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A graph 𝐺, 𝐺 = (𝑉, 𝐸).

A simple graph is a graph with neither loops 
nor multiple edges.

a

b

c d

e

f

𝐺 :

ҧ𝐺:
a

b

c d

e

f



Introduction-1

A graph 𝐺, 𝐺 = (𝑉, 𝐸).

A simple graph is a graph with neither loops 
nor multiple edges.

The complement of a given graph 𝐺 is 
denoted by ҧ𝐺. ҧ𝐺≡ 𝐾𝑛 − 𝐺.

a

b

c d

e

f

𝐺 :

ҧ𝐺:
a

b

c d

e

f



Introduction-1

A graph 𝐺, 𝐺 = (𝑉, 𝐸).

A simple graph is a graph with neither loops 
nor multiple edges.

The complement of a given graph 𝐺 is 
denoted by ҧ𝐺. ҧ𝐺≡ 𝐾𝑛 − 𝐺.

a

b

c d

e

f

𝐺 :

ҧ𝐺:
a

b

c d

e

f

The degree of a given vertex u in 𝐺 is 
defined by deg 𝑢 = | 𝑣 𝑢, 𝑣 𝜖 𝐸}|. 

The minimum degree of the graph 𝐺 is 
defined by 𝛿 = min{deg(𝑢)|𝑢𝜖 𝑉}. 
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Q: Under which conditions can we decompose a graph into 
two disjoint cycles with given lengths?
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Minimum degree= δ =3;
4+4 decomposable;
Not 3+5 decomposable.
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Here 𝑒 = 𝐸 𝐺 , ҧ𝑒=|𝐸( ҧ𝐺)|. Obviously, 𝑒 + ҧ𝑒 =
𝑛(𝑛−1)

2
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Example. n=11. ҧ𝑒 ≤ 8.
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Step 1. Given 𝑛1 = 3, pick an independent set 𝐴3 in 
ҧ𝐺 with 3 vertices such that the degree sum of these 

vertices is maximum. Let V(𝐺1)=𝐴3.
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Step 2. When 𝑛1 = 4, pick an independent set 𝐴4=𝐴3 ∪ {𝑥}
with 𝑛1 = 4 vertices. If 𝐴3 is already a maximal independent 
set in ҧ𝐺, then 𝐴4 = 𝐴3 ∪ 𝑥 where x has the least neighbors 
in 𝐴3. Let 𝑉 𝐺1 = 𝐴4.

Thus ҧ𝑒 𝐺1 =1.
ҧ𝑒(𝐺2)=0.

=> OK.
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Thus ҧ𝑒 𝐺1 =2
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the least neighbors in 𝐴4. Let V(𝐺1)=𝐴5.

Example. n=11.    ҧ𝑒 ≤ 8.
1

2

3

4

5

6
7

8

9

10

11

ҧ𝐺

1

2

6

7

8

9

5

11

3 4

10

𝒏𝟏=5 𝑨𝟓 = {𝟏, 𝟐, 𝟑, 𝟓, 𝟏𝟏}



Example. n=11. ҧ𝑒 ≤ 8.

𝑛1 𝑛2 ҧ𝑒(G1) ҧ𝑒(G2)

3 8 0 ≦5

4 7 ≦1 ≦4

5 6 ≦2 ≦3

1

2

3

4

5

6
7

8

9

10

11

ҧ𝐺



Ex1. n=10, ҧ𝑒 ≤ 7.
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Thus ҧ𝑒 𝐺1 =0
ҧ𝑒(𝐺2)=2 <=7-3

=>OK. 

𝒏𝟏=3 𝑨𝟑 = {𝟏, 𝟓, 𝟖}
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Thus ҧ𝑒 𝐺1 =0
ҧ𝑒(𝐺2)=1 <=6-3. 

=> OK.

Step 2. When 𝑛1 = 4, pick an independent set 𝐴4=𝐴3 ∪ {𝑥}
with 𝑛1 = 4 vertices. If 𝐴3 is already a maximal independent set 

in ҧ𝐺, then 𝐴4 = 𝐴3 ∪ 𝑥 where x has the least neighbors in 𝐴3. 

Let 𝑉 𝐺1 = 𝐴4.

𝒏𝟏=4 𝑨𝟒 = {𝟏, 5,8, 𝟏0}
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Ex1. n=10. ebar(G)<=6
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Thus ҧ𝑒 𝐺1 =0
ҧ𝑒(𝐺2)=0.

=>OK.

Step 2. When 𝑛1 = 5, if 𝐴4 is already a maximal 

independent set in ҧ𝐺, then 𝐴5 = 𝐴4 ∪ 𝑥 where x has 

the least neighbors in 𝐴4. Let V(𝐺1)=𝐴5.

𝒏𝟏=5 𝑨𝟓 = {𝟏, 𝟐, 𝟑, 𝟓, 𝟏𝟏}
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Conclusion

n1 n2
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THM1. THM2.

Theorem 1 and Theorem 2 fail in this case, 

but Theorem 6 is OK!
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Cor. Let 𝐺 be a graph with 𝐺 = 𝑛 ≥ 6. Let 𝑘 ≥ 2 be 
an integer. Let 1 ≤ 𝑖 ≤ 𝑘 be an integer, 𝑛𝑖 be an integer 
with 𝑛𝑖 ≥ 3, and σ𝑖=1

𝑘 𝑛𝑖 = 𝑛 . If ҧ𝑒 𝐺 ≤ 𝑛 − 3, then 
𝐺 contains k disjoint cycles with length 𝑛𝑖.



Conclusion
With our theorem, we not only guarantee the existence of the two cycle 

decomposition of G, but also give the structure of the two subgraphs G1

and G2 and the required cycles.

As a result, our theorem outperforms THM 1 and THM 2 if edges of ҧ𝐺
are connected to a small number of vertices, where δ drops quickly and 

G has a wide spectrum of vertex degrees. However, THM 1 and THM 2 

could perform better when the edges in ҧ𝐺 are more scattered such that

the degree distribution of G is in better tune. Such a conclusion is true for 

general graphs with the total number of vertices n≥6.



~ the End~

Thank you very much!


