Edge conditions on two disjoint cycles in graphs

SHIN-SHIN KAO 高欣欣

CHUNG YUAN CHRISTIAN UNIVERSITY 中原大學

第十屆海峽兩岸圖論與組合數學研討會 AUG. 19-23, 2019, 台中中興大學

- Terminology and known theorems

Main results

– Theorem 3

Conclusion

A graph G, G = (V, E).

A **simple** graph is a graph with neither loops nor multiple edges.

A graph G, G = (V, E).

A **simple** graph is a graph with neither loops nor multiple edges.

The **complement** of a given graph *G* is denoted by \overline{G} . $\overline{G} \equiv K_n - G$.

A graph G, G = (V, E).

A **simple** graph is a graph with neither loops nor multiple edges.

The **complement** of a given graph *G* is denoted by \overline{G} . $\overline{G} \equiv K_n - G$.

The **degree** of a given vertex u in G is defined by $deg(u) = |\{v|(u, v) \in E\}|.$

The **minimum degree** of the graph *G* is defined by $\delta = \min\{\deg(u) | u \in V\}$.

Q: Under which conditions can we decompose a graph into two disjoint cycles with given lengths?

Minimum degree= δ =3; 4+4 decomposable; Not 3+5 decomposable.

Q: Under which conditions can we decompose a graph into two disjoint cycles with given lengths?

Minimum degree= δ =3; 4+4 decomposable; Not 3+5 decomposable. Minimum degree= δ =4; 4+4 decomposable; Not 3+5 decomposable.

Q: Under which conditions can we decompose a graph into two disjoint cycles with given lengths?

Minimum degree= δ =3; 4+4 decomposable; Not 3+5 decomposable. Minimum degree= δ =4; 4+4 decomposable; Not 3+5 decomposable.

Q: Under which conditions can we decompose a graph into two disjoint cycles with given lengths?

Minimum degree= δ =3; 4+4 decomposable; Not 3+5 decomposable. Minimum degree= δ =4; 4+4 decomposable; Not 3+5 decomposable. Minimum degree= δ =5; 4+4 decomposable; AND 3+5 decomposable.

Q: Under which conditions can we decompose a graph into two disjoint cycles with given lengths?

Minimum degree= δ =3; 4+4 decomposable; Not 3+5 decomposable. Minimum degree= δ =4; 4+4 decomposable; Not 3+5 decomposable. Minimum degree= δ =5; 4+4 decomposable; AND 3+5 decomposable.

n1n2 $\delta(G) \ge \lceil \frac{n_1}{2} \rceil + \lceil \frac{n_2}{2} \rceil$ 444355

Theorem 1 (M. H. El-Zahar, 1984, [2]) Let G be a graph with $|G| = n \ge 6$. Let n_1 and n_2 be two integers with $n_i \ge 3$ for i = 1, 2 and $n_1 + n_2 = n$. If $\delta(G) \ge \lceil \frac{n_1}{2} \rceil + \lceil \frac{n_2}{2} \rceil$, then G has two disjoint cycles with lengths n_1 and n_2 .

Reference:

[2] M.H. El-Zahar, On circuits in graphs, Discrete Mathematics, Vol. 50, pp. 277–230, 1984.

Theorem 2 (J. Yan et. al., 2018, [5]) Let G be a graph with $|G| = n \ge 6$. Let n_1 and n_2 be two integers with $n_i \ge 3$ for i = 1, 2 and $n_1 + n_2 = n$. If $deg_G(u) + deg_G(v) \ge n + 4$ for every pair of nonadjacent vertices u and v of G, then G has two disjoint cycles with lengths n_1 and n_2 .

Reference:

[5] J. Yan, S. Zhang, Y. Ren and J. Cai, Degree sum conditions on two disjoint cycles in graphs, Information Processing Letters, Vol. 138, pp. 7–11, 2018.

Theorem 1 (M. H. El-Zahar, 1984, [2]) Let G be a graph with $|G| = n \ge 6$. Let n_1 and n_2 be two integers with $n_i \ge 3$ for i = 1, 2 and $n_1 + n_2 = n$. If $\delta(G) \ge \lceil \frac{n_1}{2} \rceil + \lceil \frac{n_2}{2} \rceil$, then G has two disjoint cycles with lengths n_1 and n_2 .

Theorem 2 (J. Yan et. al., 2018, [5]) Let G be a graph with $|G| = n \ge 6$. Let n_1 and n_2 be two integers with $n_i \ge 3$ for i = 1, 2 and $n_1 + n_2 = n$. If $deg_G(u) + deg_G(v) \ge n + 4$ for every pair of nonadjacent vertices u and v of G, then G has two disjoint cycles with lengths n_1 and n_2 .

Theorem 6. Let G be a graph with $|G| = n \ge 6$. Let n_i be an integer with $n_i \ge 3$ for i = 1, 2, and $n_1 + n_2 = n$. If $\bar{e}(G) \le n - 3$, then G contains two disjoint cycles with lengths n_1 and n_2 .

Theorem 6. Let G be a graph with $|G| = n \ge 6$. Let n_i be an integer with $n_i \ge 3$ for i = 1, 2, and $n_1 + n_2 = n$. If $\bar{e}(G) \le n - 3$, then G contains two disjoint cycles with lengths n_1 and n_2 .

Here $e = |E(G)|, \overline{e} = |E(\overline{G})|$. Obviously, $e + \overline{e} = \frac{n(n-1)}{2}$.

Theorem 6. Let G be a graph with $|G| = n \ge 6$. Let n_i be an integer with $n_i \ge 3$ for i = 1, 2, and $n_1 + n_2 = n$. If $\bar{e}(G) \le n - 3$, then G contains two disjoint cycles with lengths n_1 and n_2 .

Here $e = |E(G)|, \overline{e} = |E(\overline{G})|$. Obviously, $e + \overline{e} = \frac{n(n-1)}{2}$.

Theorem 5. (Hsu et.al., pp. 146, [3]) Let G be a graph with $n \ge 3$ and $\bar{e}(G) \le n-3$. <u>Then G is hamiltonian</u>. Moreover, the only non-hamiltonian graphs with $\bar{e}(G) \le n-2$ are $K_1 \circ K_1 \circ K_{n-2}$ and $\overline{K_2} \circ K_2 \circ K_1$.

Theorem 6. Let G be a graph with $|G| = n \ge 6$. Let n_i be an integer with $n_i \ge 3$ for i = 1, 2, and $n_1 + n_2 = n$. If $\bar{e}(G) \le n - 3$, then G contains two disjoint cycles with lengths n_1 and n_2 .

Here
$$e = |E(G)|, \overline{e} = |E(\overline{G})|$$
. Obviously, $e + \overline{e} = \frac{n(n-1)}{2}$.

Theorem 5. (Hsu et.al., pp. 146, [3]) Let G be a graph with $n \ge 3$ and $\bar{e}(G) \le n-3$. <u>Then G is hamiltonian</u>. Moreover, the only non-hamiltonian graphs with $\bar{e}(G) \le n-2$ are $K_1 \circ K_1 \circ K_{n-2}$ and $\overline{K_2} \circ K_2 \circ K_1$.

- Terminology and known theorems

Main results

– Theorem 6

Conclusion

Example. n=11. $\bar{e} \leq 8$.

n 1	n 2	$\bar{e}(G_1)$	$\bar{e}(G_2)$
3	8		
4	7		
5	6		

Example. n=11. $\bar{e} \leq 8$.

n 1	N 2	$\bar{e}(G_1)$	$\bar{e}(G_2)$
3	8	0	≦5
4	7	≦1	≦4
5	6	≦2	≦3

Step 1. Given $n_1 = 3$, pick an independent set A_3 in \overline{G} with 3 vertices such that the degree sum of these vertices is maximum. Let $V(G_1)=A_3$.

Step 1. Given $n_1 = 3$, pick an independent set A_3 in \overline{G} with 3 vertices such that the degree sum of these vertices is maximum. Let $V(G_1)=A_3$.

Thus $\bar{e}(G_1)=0$ $\bar{e}(G_2)=0.$ => OK.

Step 2. When $n_1 = 4$, pick an independent set $A_4 = A_3 \cup \{x\}$ with $n_1 = 4$ vertices. If A_3 is already a maximal independent set in \overline{G} , then $A_4 = A_3 \cup \{x\}$ where x has the least neighbors in A_3 . Let $V(G_1) = A_4$.

Step 2. When $n_1 = 5$, if A_4 is already a maximal independent set in \overline{G} , then $A_5 = A_4 \cup \{x\}$ where x has the least neighbors in A_4 . Let V(G_1)= A_5 .

Example. n=11. $\bar{e} \leq 8$.

n_1	n_2	$\bar{e}(G_1)$	$\bar{e}(G_2)$
3	8	0	≦5
4	7	≦1	≦4
5	6	≦2	≦3

Ex1. n=10,
$$\bar{e} \leq 7$$
.

Step 1. Given $n_1 = 3$, pick an independent set A_3 in \overline{G} with 3 vertices such that the degree sum of these vertices is maximum. Let V(G_1)= A_3 .

Complement(G)

Ex1. n=10,
$$\bar{e} \leq 7$$
.

Ex1. n=10. ebar(G)<=6

<u>Outline</u>

Introduction

- Terminology and known theorems

Main results

– Theorem 3

Conclusion

but Theorem 6 is OK!

Minimum degree sum=13

Cor. Let *G* be a graph with $|G| = n \ge 6$. Let $k \ge 2$ be an integer. Let $1 \le i \le k$ be an integer, n_i be an integer with $n_i \ge 3$, and $\sum_{i=1}^k n_i = n$. If $\overline{e}(G) \le n - 3$, then *G* contains *k* disjoint cycles with length n_i .

Conclusion

With our theorem, we not only guarantee the existence of the two cycle decomposition of G, but also give the structure of the two subgraphs G_1 and G_2 and the required cycles.

As a result, our theorem outperforms THM 1 and THM 2 if edges of \overline{G} are connected to a small number of vertices, where δ drops quickly and G has a wide spectrum of vertex degrees. However, THM 1 and THM 2 could perform better when the edges in \overline{G} are more scattered such that the degree distribution of G is in better tune. Such a conclusion is true for general graphs with the total number of vertices $n \ge 6$.

~ the End~

Thank you very much!

