Fdge conditions on two
disjoint cycles in graphs

SHIN-SHIN KAO % 7% %%
CHUNG YUAN CHRISTIAN UNIVERSITY 7 J + &

RO LR = PR
AUG. 19-23, 2019, [ # ¢ &< &




Outline

=Introduction
— Terminology and known theorems

sMain results
— Theorem 3

sConclusion




Introduction-1

Agraph G,G = (V,E). G- C i
A simple graph is a graph with neither loops X
nor multiple edges. b :
C d
B a
G
e
b
f




Introduction-1

Agraph G,G = (V,E). - C e
A simple graph is a graph with neither loops X
nor multiple edges. b :
The complement of a given graph G is ) i
denoted by G. G= K,, — G. .
G:
e
b
f




Introduction-1

Agraph G,G = (V,E). | C

A simple graph is a graph with neither loops X
nor multiple edges. b

The complement of a given graph G is
denoted by G. G= K,, — G.

Rl

The degree of a given vertex U in G is
defined by deg(u) = |{v|(u, v)e E}|.

The minimum degree of the graph G is f
defined by 6 = min{deg(u)|ue V}. c d
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Q: Under which conditions can we decompose a graph into
two disjoint cycles with given lengths?

Minimum degree= 6 =3;
4+4 decomposable;
Not 3+5 decomposable.
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Q: Under which conditions can we decompose a graph into
two disjoint cycles with given lengths?

Minimum degree= 6 =3; Minimum degree= 0 =4; Minimum degree= 6 =5;
4+4 decomposable; 4+4 decomposable; 4+4 decomposable;
Not 3+5 decomposable. Not 3+5 decomposable. AND 3+5 decomposable.
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Q: Under which conditions can we decompose a graph into
two disjoint cycles with given lengths?

Minimum degree= 6 =3; Minimum degree= 0 =4; Minimum degree= 6 =5;
4+4 decomposable; 4+4 decomposable; 4+4 decomposable;
Not 3+5 decomposable. Not 3+5 decomposable. AND 3+5 decomposable.
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Theorem 1 (M. H. El-Zahar, 1984, [2]) Let G be a graph with |G| =n > 6. Let ny and
ng be two integers with n; > 3 fori=1,2 and ny +ng =n. If 6(G) = [F]| + [F ], then
G has two disjoint cycles with lengths ny and ns.

Reference:

2] M.H. El-Zahar, On circuits in graphs, Discrete Mathematics, Vol. 50, pp. 277-230,
1984.
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Theorem 2 (J. Yan et. al., 2018, [5]) Let G be a graph with |G| =n > 6. Let n; and
no be two integers with n; > 3 fori=1,2 and ny +ng = n. If dege(u) + dega(v) > n+4
for every pair of nonadjacent vertices u and v of G, then G has two disjoint cycles with

lengths ny and ns.

Reference:

5] J. Yan, S. Zhang, Y. Ren and J. Cal, Degree sum conditions on two disjoint cycles
in graphs, Information Processing Letters, Vol. 138, pp. 711, 2018.
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6. Let ny and
|+ |-an]]' then

Theorem 1 (M. H. El-Zahar, 1984, [2]) Let G be a graph with |G| =n
ny be two integers with n; > 3 fori =1.2 and ny + ny = n. Ifﬁ(G} > [
G has two disjoint cycles with lengths ny and n,.

Theorem 2 (J. Yan et. al., 2018, [5]) Let G be a graph with |G|\e=n > 6. Let ny and
ng be two integers with n; > 3 fori =1,2 and ny +ny = n. Ifldega(u) + dega(v) > n+4
for every pair of nonadjacent vertices u and v of G, then G has two disjoint cycles with

lengths ny and no.
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Theorem 6. Let G be a graph with |G| = n > 6. Let n; be an integer with n; > 3 for
i=1,2 and ny +ny = n. Ife(G) < n — 3, then G contains two disjoint cycles with
lengths ny and n,.
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Theorem 6. Let G be a graph with |G| = n > 6. Let n; be an integer with n; > 3 for
i=1,2, and ny +no = n. If 6(G) < n — 3, then G contains two disjoint cycles with
lengths ny and ns.

Here e = |E(G)|,é=|E(G)|. Obviously, e + & = nn-1)

2
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Theorem 6. Let G be a graph with |G| = n > 6. Let n; be an integer with n; > 3 for
i=1,2, and ny +no = n. If 6(G) < n — 3, then G contains two disjoint cycles with
lengths ny and ns.

Here e = |E(G)|,é=|E(G)|. Obviously, e + & = n(nz—l).

Theorem 5. (Hsu et.al., pp. 146, [3]) Let G be a graph with n > 3 and e(G) < n — 3.
Then G is hamiltonian. Moreover, the only non-hamiltonian graphs with e(G) < n — 2

are Ko Kyo K, _5 and Ky o Ky 0 K.
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Theorem 6. Let G be a graph with |G| = n > 6. Let n; be an integer with n; > 3 for
i=1,2, and ny +no = n. If 6(G) < n — 3, then G contains two disjoint cycles with
lengths ny and ns.

Here e = |E(G)|,é=|E(G)|. Obviously, e + & = n(nz—l).

Theorem 5. (Hsu et.al., pp. 146, [3]) Let G be a graph with n > 3 and e(G) < n — 3.
Then G is hamiltonian. Moreover, the only non-hamiltonian graphs with e(G) < n — 2

are Ko Kyo K, _5 and Ky o Ky 0 K.
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Theorem 6. Let G be a graph with |G| =n > 6. Let n; be an integer with n; > 3 for
i = 1,2, and ny +ny = n. If e(G) < n — 3, then G contains two disjoint cycles with

lengths ny and n,.

Example.n=11. e <8.
3 38

4 7/
5 6




Theorem 6. Let G be a graph with |G| =n > 6. Let n; be an integer with n; > 3 for
i = 1,2, and ny +ny = n. If e(G) < n — 3, then G contains two disjoint cycles with

lengths ny and n,.

Example.n=11. e <8.
3 38 0 <5

4 7 <1 <4
5 6 3
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Theorem 6. Let G be a graph with |G| =n > 6. Let n; be an integer with n; > 3 for
i = 1,2, and ny +ny = n. If e(G) < n — 3, then G contains two disjoint cycles with

lengths ny and n,.

Example. n=11. e <s. .
11 \2
y
3 38 0 <5 3
4 7 <1 <4 9 .
5 6 <2 <3 .
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Step 1. Given ny = 3, pick an independent set A3 In
G with 3 vertices such that the degree sum of these
vertices is maximum. Let V(G,)=A4;.




Example. n=11.

e < 3.

11 \2

10

Step 1. Given ny = 3, pick an independent set A3 In
G with 3 vertices such that the degree sum of these
vertices is maximum. Let V(G,)=A4;.

A3 = {1,3,11}
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Thus é(Gl)=0
é(G2)=O
=> OK.



Example. n=11. e <8

1
11 \2

10

Step 2. When n,; = 4, pick an independent set A,=A3 U {x}
with n; = 4 vertices. If A3 is already a maximal independent
setin G, then A, = A3 U {x} where x has the least neighbors

A, = {1,3,5,11}

10 .2

3 & -0 4

ThUS e_(Gl)=1
e_(Gz)=0
=> OK.
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Example. n=11. e <8

11
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Step 2. When n, = 5, if A, Is already a maximal
independent set in G, then Ac = A, U {x} where x has
the least neighbors in 4,. Let V(G,)=As.

1

2 |

3 & —0
5

4 Thus e(G,)=2
6 é(G2)=O
7 =>0K.
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Theorem 6. Let G be a graph with |G| =n > 6. Let n; be an integer with n; > 3 for
i = 1,2, and ny +ny = n. If e(G) < n — 3, then G contains two disjoint cycles with

lengths ny and n,.

Example.n=11. <8

11 ‘\.

3 3 0 <5

4 7
5 6

1 <4
2 <3
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Ex1.n=10,e < 7.

1 Step 1. Given ny = 3, pick an independent set Az In
10 2 G with 3 vertices such that the degree sum of these
vertices is maximum. Let V(G,)=A4;.
9 3
8 4

Complement(G)




Ex1.n=10,e < 7.

1 Step 1. Given ny = 3, pick an independent set Az In
G with 3 vertices such that the degree sum of these

2
10
vertices is maximum. Let V(G,)=A4;.
9 ;
> Thus e(G,) =0
. p ' 3 &(G,)=2 <=7-3
4 =>0K.
7
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Ex1.n=10,e < 7.

Step 2. When n; = 4, pick an independent set A,=A; U {x}
with n; = 4 vertices. If A5 is already a maximal independent set
10 in G, then A, = A3 U {x} where x has the least neighbors in A4;.
LetV(G,) = A,.

° 3 A4 = {1,5,8,10)

2
1 / 3
8 4 j , Thus e(G,) =0
, / : 5 . . e(G,)=1<=6-3.
: 7 => OK.
S 9

Complement(G)




Ex1. n=10. ebar(G)<=6

1 Step 2. When ny, = 5, if A, Is already a maximal
10 2 independent set in G, then Az = A, U {x} where x has
the least neighbors in 4,. Let V(G,)=As.

: Sl =5 |45 = {1,2,3,5,11}

2

1 3 Thuse(G,)=0
8 : ) &(G,)=0.
7 5 M 6
-/ >

7
8 9
Complement(G)
10

=>0K.
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o
;
3 8 6 15 9 4
4 7 6 8
> 6 6 ; 6 5
Theorem 1 and Theorem 2 fail in this case, 6?4

but Theorem 6 Is OK!

Minimum degree sum=13




Theorem 6. Let G be a graph with |G| = n > 6. Let n; be an integer with n; > 3 for

i =12 and ny +ny =n. Ife(G) < n—3, then G contains two disjoint cycles with
lengths ny and n,.

Cor. Let G be a graph with |G| =n = 6. Letk = 2 be
an integer. Let 1 < i < k be an integer, n; be an integer
withn; > 3,and Y, n; = n.If é(G) < n — 3, then
G contains k disjoint cycles with length n;.



Conclusion

With our theorem, we not only guarantee the existence of the two cycle
decomposition of G, but also give the structure of the two subgraphs G:
and Gz and the required cycles.

As a result, our theorem outperforms THM 1 and THM 2 if edges of G
are connected to a small number of vertices, where ¢ drops quickly and
G has a wide spectrum of vertex degrees. However, THM 1 and THM 2
could perform better when the edges in G are more scattered such that
the degree distribution of G is in better tune. Such a conclusion is true for
general graphs with the total number of vertices n>6.
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Thank you very much!
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