The crossing number of $K_{5, n+1} \backslash e$

黄元秋
湖南师范大学
2019年8月

Definitions and Backgrounds

- A drawing of a graph G is a representation of G in the plane such that its vertices are represented by distinct points and its edges by simple continuous arcs connecting the corresponding point pairs.
- A drawing is normal if it is satisfied the following conditions:
(1) if two edges cross, they cross finite times;
(2) there are no touching intersections;
(3) no three edges cross at the same point.

- Let ϕ be a normal drawing of a graph G. Denote by $\operatorname{cr}_{\phi}(G)$ the number of crossings between edges of G under ϕ.
- The crossing number, $\operatorname{cr}(G)$, of a graph G is defined a value as follows:

$$
\operatorname{cr}(G)=\min \left\{c r_{\phi}(G)\right\},
$$

where the minimum is taken over all normal drawings ϕ of G.

A normal drawing with minimum number of crossings must satisfies the following conditions:
(1) if two edges cross, they cross at most once;

(2)adjacent edges do not cross;

(3) edges do not have self-crossings.

A normal drawing is good, if it is satisfied (1),(2) and (3) above.

By the definition of $\operatorname{cr}(G)$:

- a graph G is planar $\Longleftrightarrow \operatorname{cr}(G)=0$.
- $\operatorname{cr}\left(K_{3,3}\right)=1, \operatorname{cr}\left(K_{5}\right)=1$.

$K_{3,3}$

K_{5}
- the crossing number is an important parameter to measure how far a graph is from a planar graph.

The aspects in the study of the crossing number of graphs

- The exact determination of crossing number of some specific classes of graphs.
- Estimation of upper and lower bounds of the crossing number.
- The crossing number and the structural properties of graphs.
- The crossing number and other graph parameters.
- Various other forms of crossing numbers.
- The algorithm.
(The crossing number problem is NP-complete!)
- The surface crossing number of graphs.

Two challenging conjectures

(1) The complete graph K_{n}

Conjecture (Guy, 1970's)
$\operatorname{cr}\left(K_{n}\right)=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor: \triangleq Z(n)$
For any real number $x,\lfloor x\rfloor$ means the largest integer not exceeding x.

- $0.8594 Z(n) \leq c r\left(K_{n}\right) \leq Z(n) . \quad$ [Etienne, et.al., 2007]
- $\operatorname{cr}\left(K_{n}\right)=Z(n)$ for $n \leq 10$. [Guy, 1972]
- $\operatorname{cr}\left(K_{n}\right)=Z(n)$ for $n=11,12$. [Pan, Richter, 2007, JGT]
- (1) $\operatorname{cr}\left(K_{n}\right) \geq\left\lceil\frac{n}{n-4} \operatorname{cr}\left(K_{n-1}\right)\right\rceil$;
(2) $\operatorname{cr}\left(K_{13}\right) \in\{217,219,221,223,225\}$;
(3) $\operatorname{cr}\left(K_{13}\right) \neq 217$ 。
[Dan McQuillan, Shengjun Pan, R.B.Richter, 2015, JCTB]
$\operatorname{cr}\left(K_{13}\right)=$?
(2) The complete bipartite graph $K_{m, n}(m \leq n)$

Conjecture (Zarankiewicz, 1950's)
$\operatorname{cr}\left(K_{m, n}\right)=Z(m, n)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$
There exists a good drawing achieving the conjectured value of the crossing number!

A drawing for $K_{3,5}$

- For $m \leq 6, \operatorname{cr}\left(K_{m, n}\right)=Z(m, n)$. [Kleitman, 1970, JGT]
- Zarankiewcz's conjecture is true for $K_{7,7}, K_{7,8}, K_{7,9}, K_{7,10}$, $K_{8,8}, K_{8,9}, K_{8,10} \quad$ [Woodall, 1993, JGT]

$$
\operatorname{cr}\left(K_{7, n}\right)=\text { ? for } n \geq 11
$$

Our motivation

The lower bound of $\operatorname{cr}(G \backslash e)$ in terms of $\operatorname{cr}(G)$.

- Every graph G contains an edge e so that $\operatorname{cr}(G \backslash e) \geq \frac{2}{5} \operatorname{cr}(G)-1$. [Richter,Thomassen,1993, JCTB]
- Let G be a graph with no vertices of degree 3. Then there is an edge e of G such that $\operatorname{cr}(G \backslash e) \geq \frac{1}{2} \operatorname{cr}(G)-\frac{37}{2}$. [Salazar, 2000, JCTB]
- For every connected graph G with n vertices and $m \geq 1$ edges, and for every edge e of G, we have $\operatorname{cr}(G \backslash e) \geq \operatorname{cr}(G)-2 m+\frac{n}{2}+1$. [J.Fox, C.D.Toth, 2015, JGT] (the above result improves on the Richter-Thomassen result for graphs with n vertices and $m \geq 10.1 n$ edges.)

How to determine the exact value of $\operatorname{cr}(G \backslash e)$ for a graph G whose $\operatorname{cr}(G)$ is known?
For example, $\operatorname{cr}\left(K_{m, n}\right)=Z(m, n)$ for $m \leq 6$, what about $\operatorname{cr}\left(K_{m, n} \backslash e\right)$ for any edge e of $K_{m, n}$.
[Gek L. Chia, and Chan L.Lee, Crossing number of nearly complete graph and nearly complete bipartite graph, ARS Combinatoria, 121 (2015),437-446.]
(1) $\operatorname{cr}\left(K_{3, n} \backslash e\right)=Z^{*}(3, n), \operatorname{cr}\left(K_{4, n} \backslash e\right)=Z^{*}(4, n)$, where $Z^{*}(m, n)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor-\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$.
(2) $\operatorname{cr}\left(K_{5,5} \backslash e\right)=Z^{*}(5,5)$.

Conjecture:
Let e be an edge in $K_{m, n}$. Then $\operatorname{cr}\left(K_{m, n} \backslash e\right)=Z^{*}(m, n)$.

Our result

Theorem. $\operatorname{cr}\left(K_{5, n+1} \backslash e\right)=n(n-1)=Z^{*}(5, n+1)$ for any $n \geq 0$.
Define H to be the following graph:

Define G_{n} to be the following graph: add $n(n \geq 1)$ new vertices $z_{1}, z_{2}, \cdots, z_{n}$, and connect each $z_{i}(1 \leq i \leq n)$ to all vertices of H except from z_{0}.

Obviously, $G_{n} \cong K_{5, n+1} \backslash e$

The sketch of the proof of Theorem

Lemma 1 (Upper bound). $\operatorname{cr}\left(G_{n}\right) \leq n(n-1)$.

$$
c r_{\phi}\left(G_{n}\right)=Z(5, n)+2\left\lfloor\frac{n}{2}\right\rfloor=n(n-1)
$$

Lemma 2. $\operatorname{cr}\left(G_{n}\right)=n(n-1)$ for $1 \leq n \leq 4$.
Because $G_{1} \cong K_{5,2} \backslash e, G_{2} \cong K_{5,3} \backslash e, G_{3} \cong K_{5,4} \backslash e$, and $G_{4} \cong K_{5,5} \backslash e$.

Our method is by induction on n.
Suppose that $\operatorname{cr}\left(G_{k}\right)=k(k-1)$ for any $1 \leq k \leq n-1$.
In order to prove that $\operatorname{cr}\left(G_{n}\right)=n(n-1)$, by Lemma 1 it suffices to prove that $\operatorname{cr}_{\theta}\left(G_{n}\right) \geq n(n-1)$ for any a good drawing θ.

Assume to contrary that G_{n} has a good drawing ϕ such that

$$
\begin{equation*}
c r_{\phi}\left(G_{n}\right)<n(n-1) \tag{*}
\end{equation*}
$$

Claim 1. For any $1 \leq i \leq n, r_{\phi}\left(z_{i}\right) \leq 2 n-3$, where $r_{\phi}\left(z_{i}\right)$ is the number of the crossings of ϕ involving the edges G_{n} incident to z_{i}.

for,otherwise,

$$
\begin{aligned}
c r_{\phi}\left(G_{n}\right) & =r_{\phi}\left(z_{1}\right)+c r_{\phi}\left(G_{n-1}\right) \\
& \geq 2 n-2+(n-1)(n-2) \\
& \geq n(n-1) .
\end{aligned}
$$

A contradiction to $(*)$.

Claim 2. For any $1 \leq i, j \leq n$ and $i \neq j, \operatorname{cr}_{\phi}\left(E_{z_{i}}, E_{z_{j}}\right) \geq 1$.

for,otherwise, $\subset r_{\phi}\left(G_{n}\right)=$
$\operatorname{cr}_{\phi}\left(E_{z_{1}} \cup E_{z_{2}}, E_{z_{0}}\right)+c r_{\phi}\left(E_{z_{1}} \cup E_{z_{2}}, \bigcup_{i=3}^{n} E_{z_{i}}\right)+c r_{\phi}\left(G_{n-2}\right) \geq n(n-1)$.
A contradiction to $(*)$.

Claim 3. There exist four distinct Z-vertices of G_{n}, say z_{1}, z_{2}, z_{3}, and z_{4}, such that
(1) $\operatorname{cr}_{\phi}\left(E_{z_{1}} \cup E_{z_{2}} \cup E_{z_{3}} \cup E_{z_{4}}\right)=9$.
(2) for any $5 \leq i \leq n, c_{\phi}\left(E_{z_{1}} \cup E_{z_{2}} \cup E_{z_{3}} \cup E_{z_{4}}, E_{z_{i}}\right)=7$, or ≥ 9; moreover, if $\operatorname{cr}_{\phi}\left(E_{z_{1}} \cup E_{z_{2}} \cup E_{z_{3}} \cup E_{z_{4}}, E_{z_{i}}\right)=7$, then $\operatorname{cr}_{\phi}\left(E_{z_{1}}, E_{z_{i}}\right)=4$.

For otherwise, we can also induce a contradiction to $(*)$.

Now estimate $c r_{\phi}\left(G_{n}\right)$.
Set $S=\left\{z_{i} \mid c r_{\phi}\left(\bigcup_{k=1}^{4} E_{z_{k}}, E_{z_{i}}\right)=7,5 \leq i \leq n\right\}$ and $|S|=s$.

So, by the above Claims and the inductive hypothesis,

$$
\begin{aligned}
c r_{\phi}\left(G_{n}\right) & \geq 9+1+7 s+9(n-4-s)+c r_{\phi}\left(G_{n-4}\right) \\
& =9 n-2 s-26+(n-4)(n-5)=n^{2}-2 s-6
\end{aligned}
$$

Now estimate $r_{\phi}\left(z_{1}\right)$.

By the definition of $r_{\phi}\left(z_{1}\right)$, and the above Claims,

$$
\begin{aligned}
r_{\phi}\left(z_{1}\right) & \geq 3+4 s+(n-4-s) \\
& =n-1+3 s
\end{aligned}
$$

By Claim $1, r_{\phi}\left(z_{1}\right) \leq 2 n-3$, and thus $n-1+3 s \leq 2 n-3$. So,

$$
3 s \leq n-6 .
$$

By the above arguments,

$$
c r_{\phi}\left(G_{n}\right) \geq n^{2}-2 s-6
$$

Note that $n \geq 5$, and we can obtain that $\operatorname{cr}_{\phi}\left(G_{n}\right) \geq n(n-1)$, a contradiction to $(*)$.

Therefore, $\operatorname{cr}\left(G_{n}\right)=n(n-1)$, proving the theorem.

Remark: Recently we have determined $\operatorname{cr}\left(K_{3, n} \backslash 2 e\right), \operatorname{cr}\left(K_{4, n} \backslash 2 e\right)$, $\operatorname{cr}\left(K_{5, n} \backslash 2 e\right)$.

But $\operatorname{cr}\left(K_{6, n} \backslash e\right)=?, \operatorname{cr}\left(K_{6, n} \backslash 2 e\right)=?$

THANK YOU!

