The crossing number of $K_{5,n+1} \setminus e$

黄元秋

湖南师范大学

2019年8月

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definitions and Backgrounds

- A drawing of a graph G is a representation of G in the plane such that its vertices are represented by distinct points and its edges by simple continuous arcs connecting the corresponding point pairs.
- A drawing is normal if it is satisfied the following conditions:
 - (1) if two edges cross, they cross finite times;
 - (2) there are no touching intersections;
 - (3) no three edges cross at the same point.

・ロット (雪) (き) (き) (き)

- Let φ be a normal drawing of a graph G. Denote by cr_φ(G) the number of crossings between edges of G under φ.
- The crossing number, cr(G), of a graph G is defined a value as follows:

$$cr(G) = \min\{cr_{\phi}(G)\},\$$

where the minimum is taken over all normal drawings ϕ of G.

A normal drawing with minimum number of crossings must satisfies the following conditions:

(1) if two edges cross, they cross at most once;

(2)adjacent edges do not cross;

(3) edges do not have self-crossings.

A normal drawing is good, if it is satisfied (1), (2) and (3) above.

By the definition of cr(G):

• a graph G is planar $\iff cr(G) = 0$.

•
$$cr(K_{3,3}) = 1$$
, $cr(K_5) = 1$.

• the crossing number is an important parameter to measure how far a graph is from a planar graph.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The aspects in the study of the crossing number of graphs

- The exact determination of crossing number of some specific classes of graphs.
- Estimation of upper and lower bounds of the crossing number.
- The crossing number and the structural properties of graphs.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The crossing number and other graph parameters.
- Various other forms of crossing numbers.
- The algorithm. (The crossing number problem is NP-complete !)
- The surface crossing number of graphs.

Two challenging conjectures

(1) The complete graph K_n Conjecture (Guy, 1970's) $cr(K_n) = \frac{1}{4} \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor \lfloor \frac{n-2}{2} \rfloor \lfloor \frac{n-3}{2} \rfloor : \stackrel{\triangle}{=} Z(n)$

For any real number x, $\lfloor x \rfloor$ means the largest integer not exceeding x.

• $0.8594Z(n) \le cr(K_n) \le Z(n)$. [Etienne, et.al., 2007]

•
$$cr(K_n) = Z(n)$$
 for $n \le 10$. [Guy, 1972]

•
$$cr(K_n) = Z(n)$$
 for $n = 11, 12$. [Pan, Richter, 2007, JGT]

• (1)
$$cr(K_n) \ge \left\lceil \frac{n}{n-4} cr(K_{n-1}) \right\rceil$$
;
(2) $cr(K_{13}) \in \{217, 219, 221, 223, 225\}$;
(3) $cr(K_{13}) \ne 217$.
[Dan McQuillan, Shengjun Pan, R.B.Richter, 2015, JCTB]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $cr(K_{13}) = ?$

(2) The complete bipartite graph $K_{m,n}$ $(m \leq n)$

Conjecture (Zarankiewicz, 1950's) $cr(K_{m,n}) = Z(m,n) = \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor$

There exists a good drawing achieving the conjectured value of the crossing number!

A drawing for $K_{3,5}$

- For $m \le 6$, $cr(K_{m,n}) = Z(m, n)$. [Kleitman, 1970, JGT]
- Zarankiewcz's conjecture is true for K_{7,7}, K_{7,8}, K_{7,9}, K_{7,10}, K_{8,8}, K_{8,9}, K_{8,10}. [Woodall, 1993, JGT]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $cr(K_{7,n}) = ?$ for $n \ge 11$

Our motivation

The lower bound of $cr(G \setminus e)$ in terms of cr(G).

- Every graph G contains an edge e so that cr(G\e) ≥ ²/₅cr(G) − 1. [Richter, Thomassen, 1993, JCTB]
- Let G be a graph with no vertices of degree 3. Then there is an edge e of G such that $cr(G \setminus e) \ge \frac{1}{2}cr(G) \frac{37}{2}$. [Salazar, 2000, JCTB]
- For every connected graph G with n vertices and m ≥ 1 edges, and for every edge e of G, we have cr(G\e) ≥ cr(G) 2m + n/2 + 1. [J.Fox, C.D.Toth, 2015, JGT]

(the above result improves on the Richter-Thomassen result for graphs with *n* vertices and $m \ge 10.1n$ edges.)

How to determine the exact value of $cr(G \setminus e)$ for a graph G whose cr(G) is known ?

For example, $cr(K_{m,n}) = Z(m,n)$ for $m \le 6$, what about $cr(K_{m,n} \setminus e)$ for any edge e of $K_{m,n}$.

[Gek L. Chia, and Chan L.Lee, Crossing number of nearly complete graph and nearly complete bipartite graph, ARS Combinatoria, 121 (2015),437-446.]

(1)
$$cr(K_{3,n} \setminus e) = Z^*(3, n), cr(K_{4,n} \setminus e) = Z^*(4, n)$$
, where
 $Z^*(m, n) = \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor - \left\lfloor \frac{m-1}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor.$
(2) $cr(K_{5,5} \setminus e) = Z^*(5,5).$

Conjecture:

Let e be an edge in $K_{m,n}$. Then $cr(K_{m,n} \setminus e) = Z^*(m, n)$.

Our result

Theorem. $cr(K_{5,n+1} \setminus e) = n(n-1) = Z^*(5, n+1)$ for any $n \ge 0$. Define H to be the following graph:

Define G_n to be the following graph: add $n(n \ge 1)$ new vertices z_1, z_2, \dots, z_n , and connect each z_i $(1 \le i \le n)$ to all vertices of H except from z_0 .

Obviously, $G_n \cong K_{5,n+1} \setminus e$

The sketch of the proof of Theorem

Lemma 1 (Upper bound). $cr(G_n) \leq n(n-1)$.

≣ *•* ९२.०

・ロト ・聞ト ・ヨト ・ヨト

$$cr_{\phi}(G_n) = Z(5,n) + 2\left\lfloor \frac{n}{2} \right\rfloor = n(n-1)$$

Lemma 2. $cr(G_n) = n(n-1)$ for $1 \le n \le 4$.

Because $G_1 \cong K_{5,2} \setminus e$, $G_2 \cong K_{5,3} \setminus e$, $G_3 \cong K_{5,4} \setminus e$, and $G_4 \cong K_{5,5} \setminus e$.

Our method is by induction on n.

Suppose that $cr(G_k) = k(k-1)$ for any $1 \le k \le n-1$.

In order to prove that $cr(G_n) = n(n-1)$, by Lemma 1 it suffices to prove that $cr_{\theta}(G_n) \ge n(n-1)$ for any a good drawing θ .

Assume to contrary that G_n has a good drawing ϕ such that

$$cr_{\phi}(G_n) < n(n-1).$$
 (*)

Claim 1. For any $1 \le i \le n$, $r_{\phi}(z_i) \le 2n - 3$, where $r_{\phi}(z_i)$ is the number of the crossings of ϕ involving the edges G_n incident to z_i .

for, otherwise,

$$cr_{\phi}(G_n) = r_{\phi}(z_1) + cr_{\phi}(G_{n-1})$$

 $\geq 2n - 2 + (n-1)(n-2)$
 $\geq n(n-1).$

A contradiction to (*).

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Claim 2. For any $1 \le i, j \le n$ and $i \ne j$, $cr_{\phi}(E_{z_i}, E_{z_i}) \ge 1$.

for,otherwise, $cr_{\phi}(G_n) = cr_{\phi}(E_{z_1} \cup E_{z_2}, E_{z_0}) + cr_{\phi}(E_{z_1} \cup E_{z_2}, \bigcup_{i=3}^{n} E_{z_i}) + cr_{\phi}(G_{n-2}) \ge n(n-1).$ A contradiction to (*).

Claim 3. There exist four distinct Z-vertices of G_n , say z_1, z_2, z_3 , and z_4 , such that

(1) $cr_{\phi}(E_{z_1} \cup E_{z_2} \cup E_{z_3} \cup E_{z_4}) = 9.$ (2) for any $5 \le i \le n$, $cr_{\phi}(E_{z_1} \cup E_{z_2} \cup E_{z_3} \cup E_{z_4}, E_{z_i}) = 7$, or ≥ 9 ; moreover, if $cr_{\phi}(E_{z_1} \cup E_{z_2} \cup E_{z_3} \cup E_{z_4}, E_{z_i}) = 7$, then $cr_{\phi}(E_{z_1}, E_{z_i}) = 4.$

For otherwise, we can also induce a contradiction to (*).

Now estimate $cr_{\phi}(G_n)$. Set $S = \{z_i | cr_{\phi} (\bigcup_{k=1}^4 E_{z_k}, E_{z_i}) = 7, 5 \le i \le n\}$ and |S| = s.

So, by the above Claims and the inductive hypothesis,

$$cr_{\phi}(G_n) \ge 9 + 1 + 7s + 9(n - 4 - s) + cr_{\phi}(G_{n - 4})$$

= $9n - 2s - 26 + (n - 4)(n - 5) = n^2 - 2s - 6$

Now estimate $r_{\phi}(z_1)$.

By the definition of $r_{\phi}(z_1)$, and the above Claims,

$$r_{\phi}(z_1) \ge 3 + 4s + (n - 4 - s)$$

= $n - 1 + 3s$

æ

By Claim 1, $r_{\phi}(z_1) \le 2n - 3$, and thus $n - 1 + 3s \le 2n - 3$. So,

 $3s \leq n-6$.

By the above arguments,

$$cr_{\phi}(G_n) \geq n^2 - 2s - 6.$$

Note that $n \ge 5$, and we can obtain that $cr_{\phi}(G_n) \ge n(n-1)$, a contradiction to (*).

Therefore, $cr(G_n) = n(n-1)$, proving the theorem.

Remark: Recently we have determined $cr(K_{3,n}\backslash 2e)$, $cr(K_{4,n}\backslash 2e)$, $cr(K_{5,n}\backslash 2e)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

But
$$cr(K_{6,n} \setminus e) = ?$$
, $cr(K_{6,n} \setminus 2e) = ?$

THANK YOU !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ