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Definitions and Backgrounds

e A drawing of a graph G is a representation of G in the plane
such that its vertices are represented by distinct points and its
edges by simple continuous arcs connecting the corresponding
point pairs.

e A drawing is normal if it is satisfied the following conditions:
(1) if two edges cross, they cross finite times;

(2) there are no touching intersections;

(3) no three edges cross at the same point.



e Let ¢ be a normal drawing of a graph G. Denote by cry(G)
the number of crossings between edges of G under ¢.

e The crossing number, cr(G), of a graph G is defined a value
as follows:

cr(G) = min{cry(G)},

where the minimum is taken over all normal drawings ¢ of G.



A normal drawing with minimum number of crossings must
satisfies the following conditions:

(1) if two edges cross, they cross at most once;

X —



(2)adjacent edges do not cross;

(3) edges do not have self-crossings.
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A normal drawing is good, if it is satisfied (1),(2) and (3) above.



By the definition of ¢r(G):
e a graph G is planar <= c¢r(G) = 0.

e cr(K33) =1, cr(Ks) = 1.

K33 Ks

)

e the crossing number is an important parameter to measure
how far a graph is from a planar graph.



The aspects in the study of the crossing number of graphs

e The exact determination of crossing number of some specific
classes of graphs.

e Estimation of upper and lower bounds of the crossing number.
e The crossing number and the structural properties of graphs.
e The crossing number and other graph parameters.

e Various other forms of crossing numbers.

e The algorithm.
(The crossing number problem is NP-complete !)

e The surface crossing number of graphs.



Two challenging conjectures

(1) The complete graph K,
Conjecture (Guy, 1970's)

cr(kn) = 3 |3] |22 | 52) [ 2] = 2(m)

For any real number x, | x| means the largest integer not
exceeding x.



0.8594Z(n) < cr(K,) < Z(n). [Etienne, et.al., 2007]
cr(Kn) = Z(n) for n <10.  [Guy, 1972]

cr(Kn) = Z(n) for n=11,12.  [Pan, Richter, 2007, JGT]
(1) er(Ka) = | 327¢r(Kn-1)]

(2) cr(Kys) € {217,219, 221, 223,225},

(3) cr(K13) 75 217,
[Dan McQuillan, Shengjun Pan, R.B.Richter, 2015, JCTB]

Cr(K13) =7



(2) The complete bipartite graph Ky, , (m < n)

Conjecture (Zarankiewicz,1950's)
cr(Kmpn) =2Z(m,n) = L%J LmTflJ EJ L%IJ

There exists a good drawing achieving the conjectured value of the
crossing number!

A drawing for K35




e For m<6, cr(Kmn) =Z(m,n). [Kleitman, 1970, JGT]

e Zarankiewcz's conjecture is true for K7 7. K78+ K79, K710,
Kg’g,K&g, K8,10- [Woodall, 1993, JGT]

cr(K7,p) =7 for n> 11



Our motivation

The lower bound of cr(G\e) in terms of cr(G).

e Every graph G contains an edge e so that
cr(G\e) > Zcr(G) — 1. [Richter, Thomassen,1993, JCTB]

e Let G be a graph with no vertices of degree 3. Then there is
an edge e of G such that cr(G\e) > 1cr(G) — 3. [Salazar,
2000, JCTB]

e For every connected graph G with n vertices and m > 1

edges, and for every edge e of G, we have
cr(G\e) > cr(G) —2m+ 5 +1. [J.Fox, C.D.Toth, 2015, JGT]

(the above result improves on the Richter-Thomassen result
for graphs with n vertices and m > 10.1n edges.)



How to determine the exact value of cr(G\e) for a graph G whose
cr(G) is known ?

For example, cr(Km n) = Z(m, n) for m < 6 , what about
cr(Km,n\e) for any edge e of Kp, p.

[Gek L. Chia, and Chan L.Lee, Crossing number of nearly complete graph and
nearly complete bipartite graph, ARS Combinatoria, 121 (2015),437-446.]

e

(1) er(Kzn\e) = Z*(3,n), cr(
TR
(2) cr(Kss\e

= Z*(4, n), where
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) = Z*(5,5).

Conjecture:
Let e be an edge in K, 5. Then cr(Km n\e) = Z*(m, n).



Our result

Theorem. cr(Ks pi1\e) = n(n—1) = Z*(5,n+ 1) for any n > 0.
Define H to be the following graph:

03,
ay a; Zo az 4y

Define G, to be the following graph: add n(n > 1) new vertices
71, Z2, -+, Zn, and connect each z; (1 < i < n) to all vertices of H
except from zj.

Obviously, G, = Ks 511\e



The sketch of the proof of Theorem

Lemma 1 (Upper bound). cr(G,) < n(n—1).




Lemma 2. ¢r(G,) = n(n—1) for 1 < n <4,

Because Gl = K572\e, G2 = K573\e, G3 = K574\e, and
G4 = K575\e.

Our method is by induction on n.
Suppose that cr(Gk) = k(k —1) forany 1 < k < n—1.

In order to prove that cr(G,) = n(n—1), by Lemma 1 it suffices to
prove that cry(G,) > n(n — 1) for any a good drawing 6.

Assume to contrary that G, has a good drawing ¢ such that

crg(Gp) < n(n—1). (%)



Claim 1. For any 1 < i < n, rg(z)) < 2n— 3, where ry(z) is the
number of the crossings of ¢ involving the edges G, incident to z;.

14(Z1)
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for,otherwise,
CI’¢(G,7) :r¢(21) + Cr¢(Gn_1)
>2n—2+(n—1)(n—2)
>n(n—1).

A contradiction to ().



Claim 2. Forany 1 <i,j < nand i#j, cry(Ez, Ez) > 1.
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for,otherwise, cry(G,) =

n
crp(Ez U Eyy, Exy) + crg(E, U E,,, U E;) + crg(Gn—2)> n(n—1).

=

A contradiction to (k).



Claim 3. There exist four distinct Z-vertices of G,, say z1,2», z3,
and zg, such that

(1) crg(E, UE, UE, UE,) = 9.

(2) forany 5 <i<n, cry(E;, UE, UE,, UE,, E;)=T7,0r >9;
moreover, if crg(E, UE,, UE,, UE,, E;) =17, then
CI’¢(E21, Ez,.) =4.

For otherwise, we can also induce a contradiction to (x).



Now estimate cry(Gp).
4
Set S ={z \crd,( U Ezk,Ez,.> =7,5<i<n}and|S|=s.
k=1

T={2%.%. o o o 7Z:}\S

So, by the above Claims and the inductive hypothesis,

cry(Gn) 29 +1+7s+9(n—4 —s) + cry(Gp—sa)
=9n—25—26+(n—4)(n—5)=n*>—-25—6



Now estimate rg(z1).

By the definition of r4(z1), and the above Claims,

re(z1) >3 +4s+(n—4—5)
=n—1+3s



By Claim 1, ry4(z1) < 2n—3, and thus n — 1+ 3s < 2n— 3. So,

3s<n-—6.

By the above arguments,

cry(Gn) > n? — 25 — 6.

Note that n > 5, and we can obtain that cry(G,) > n(n—1), a
contradiction to (x).

Therefore, cr(G,) = n(n — 1), proving the theorem.



Remark: Recently we have determined cr(Ks ,\2e), cr(Ka n\2e),
cr(Ks n\2e).

But cr(Ks,n\e) =?, cr(Ke,n\2e) =7



THANK YOU !



