$(2P_2, K_4)$ -Free Graphs are 4-Colorable

Serge Gaspers¹ Shenwei Huang ²

¹School of Computer Science and Engineering, University of New South Wales

²College of Computer Science, Nankai University

The 10th Cross-strait Conference on Graph Theory and Combinatorics Taiwan, 22 August 2019

ヘロン 人間 とくほ とくほ とう

Shenwei Huang (Nankai University)

・ロト ・聞 ト ・ ヨト ・ ヨトー

Graph Coloring

Shenwei Huang (Nankai University)

ヘロト 人間 とくほとくほとう

Graph Coloring

Given a graph G = (V, E), a function $\phi : V(G) \rightarrow \{1, 2, ..., k\}$ is a *k*-coloring of *G* if $\phi(u) \neq \phi(v)$ whenever $uv \in E(G)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Graph Coloring

Given a graph G = (V, E), a function $\phi : V(G) \rightarrow \{1, 2, ..., k\}$ is a *k*-coloring of *G* if $\phi(u) \neq \phi(v)$ whenever $uv \in E(G)$.

The *chromatic number* of a graph *G*, denoted by $\chi(G)$, is the smallest *k* such that *G* has a *k*-coloring.

イロト イポト イヨト イヨト

э.

Graph Coloring

Given a graph G = (V, E), a function $\phi : V(G) \rightarrow \{1, 2, ..., k\}$ is a *k*-coloring of *G* if $\phi(u) \neq \phi(v)$ whenever $uv \in E(G)$.

The *chromatic number* of a graph *G*, denoted by $\chi(G)$, is the smallest *k* such that *G* has a *k*-coloring.

イロト イポト イヨト イヨト

Clique Number

Let G = (V, E) be graph. A *clique* of *G* is a subset *K* of vertices such that every two vertices in *K* are adjacent. The *size* of *K* is the number of vertices in *K*.

イロン イボン イヨン イヨン

æ

Clique Number

Let G = (V, E) be graph. A *clique* of *G* is a subset *K* of vertices such that every two vertices in *K* are adjacent. The *size* of *K* is the number of vertices in *K*.

イロン イボン イヨン

The *clique number* of *G*, denoted by $\omega(G)$, is the size of a largest clique of *G*.

Clique Number

Let G = (V, E) be graph. A *clique* of *G* is a subset *K* of vertices such that every two vertices in *K* are adjacent. The *size* of *K* is the number of vertices in *K*.

イロト イポト イヨト イヨト

The *clique number* of *G*, denoted by $\omega(G)$, is the size of a largest clique of *G*.

Observation

For any graph G, $\chi(G) \geq \omega(G)$.

Observation

For any graph G, $\chi(G) \ge \omega(G)$.

Question

Can we upper bound $\chi(G)$ in terms of a function of $\omega(G)$?

E 990

・ロン・(理)・ ・ ヨン・

- $\chi \leq 2\omega$?
- $\chi \le \omega^2$?
- $\chi \leq 2^{\omega}$?

Observation

For any graph G, $\chi(G) \ge \omega(G)$.

Question

Can we upper bound $\chi(G)$ in terms of a function of $\omega(G)$?

・ロン・西方・ ・ ヨン・ ヨン・

3

- $\chi \leq 2\omega$?
- $\chi \le \omega^2$?
- $\chi \leq 2^{\omega}$?

No! Myceilsky Construction.

Special Graph Classes.

A class \mathcal{G} of graphs is χ -bounded if there exists a function f such that $\chi(G) \leq f(\omega(G))$ for every graph $G \in \mathcal{G}$. The function f is called a χ -bounding function for \mathcal{G} .

イロト イポト イヨト イヨト

э.

Special Graph Classes.

A class \mathcal{G} of graphs is χ -bounded if there exists a function f such that $\chi(G) \leq f(\omega(G))$ for every graph $G \in \mathcal{G}$. The function f is called a χ -bounding function for \mathcal{G} .

Example

- Bipartite graphs: $\chi = \omega = 2$. $\rightarrow f(x) = x$.
- ▶ Berge graphs: $\chi = \omega$. (Strong Perfect Graph Theorem.)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

H-Free Graphs

A graph is *H*-free if it does not contain *H* as an induced subgraph.

ヘロト 人間 とくほとくほとう

₹ 990

H-Free Graphs

A graph is H-free if it does not contain H as an induced subgraph.

Gyárfás Conjecture 1975

For every forest *T*, the class of *T*-free graphs is χ -bounded.

イロト イポト イヨト イヨト

H-Free Graphs

A graph is *H*-free if it does not contain *H* as an induced subgraph.

Gyárfás Conjecture 1975

For every forest *T*, the class of *T*-free graphs is χ -bounded.

Known

- paths (Gyárfás 1987)
- trees of radius at most 2 (Kierstead and Penrise 1994)
- special trees of radius at most 3 (Kierstead and Zhu 2004)

ヘロト 人間 ト ヘヨト ヘヨト

ъ

 Two-legged caterpillars and double-headed brooms (Chudnovsky, Scott and Seymour 2017)

Our Interests

We are interested in $2P_2$ -free graphs.

ヘロト 人間 とくほとくほとう

Our Interests

We are interested in $2P_2$ -free graphs.

Figure: $2P_2$.

Wagon 1980 JCTB

Let *G* be a 2*P*₂-free graph. Then $\chi \leq {\binom{\omega+1}{2}}$.

Proof. Choose a maximum clique *K* and show that *G* can be partitioned into $\binom{\omega}{2} + \omega = \binom{\omega+1}{2}$ stable sets.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Our Interests

We are interested in $2P_2$ -free graphs.

Figure: $2P_2$.

Wagon 1980 JCTB

Let *G* be a $2P_2$ -free graph. Then $\chi \leq {\binom{\omega+1}{2}}$.

Proof. Choose a maximum clique *K* and show that *G* can be partitioned into $\binom{\omega}{2} + \omega = \binom{\omega+1}{2}$ stable sets.

Questions by Wagon

- What is the optimal χ-bounding function?
- What is the optimal bound when $\omega = 3$?

Shenwei Huang (Nankai University)

The Main Result

- If $\omega = 3$, we know that
 - $\chi \leq 6$ by Wagon 1980.
 - $\chi \leq 5$ by Esperet, Lemoine, Maffray and Morel 2013.

The Main Result

If $\omega = 3$, we know that

- $\chi \leq 6$ by Wagon 1980.
- $\chi \leq 5$ by Esperet, Lemoine, Maffray and Morel 2013.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem (S. Gaspers, H., 18)

Every $(2P_2, K_4)$ -free graph is 4-colorable.

The Main Result

If $\omega = 3$, we know that

- $\chi \leq 6$ by Wagon 1980.
- $\chi \leq 5$ by Esperet, Lemoine, Maffray and Morel 2013.

Theorem (S. Gaspers, H., 18)

Every $(2P_2, K_4)$ -free graph is 4-colorable.

• The bound is optimal: W_5 and $\overline{C_7}$.

The Main Result

If $\omega = 3$, we know that

- $\chi \leq 6$ by Wagon 1980.
- $\chi \leq 5$ by Esperet, Lemoine, Maffray and Morel 2013.

イロト イポト イヨト イヨト

э.

Theorem (S. Gaspers, H., 18)

Every $(2P_2, K_4)$ -free graph is 4-colorable.

- The bound is optimal: W_5 and $\overline{C_7}$.
- The bound is a Vizing-type bound.
- Our proof is algorithmic.

An Application

- Determining $\chi(G)$ for a graph *G* is NP-complete.
- ▶ Numerous studies on *H*-free graphs.

P. A. Golovach, M. Johnson, D. Paulusma, and J. Song. A survey on the computational complexity of coloring graphs with forbidden subgraphs.

ヘロト 人間 ト ヘヨト ヘヨト

æ

J. Graph Theory, 84:331–363, 2017.

An Application

- Determining $\chi(G)$ for a graph *G* is NP-complete.
- ▶ Numerous studies on *H*-free graphs.

P. A. Golovach, M. Johnson, D. Paulusma, and J. Song. A survey on the computational complexity of coloring graphs with forbidden subgraphs.

ヘロト ヘ戸ト ヘヨト ヘヨト

э

J. Graph Theory, 84:331–363, 2017.

Three Open Problems for (H_1, H_2) -Free Graphs

- ► $(4P_1, C_4)$.
- $(4P_1, K_{1,3}).$
- $(4P_1, P_2 + 2P_1, K_{1,3}).$

An Application

Theorem (S. Gaspers, H., 18)

There exists a 2-approximation algorithm for coloring $(4P_1, C_4)$ -free graphs.

イロト イポト イヨト イヨト

An Application

Theorem (S. Gaspers, H., 18)

There exists a 2-approximation algorithm for coloring $(4P_1, C_4)$ -free graphs.

Proof

Let *G* be a $(4P_1, C_4)$ -free graph. Then \overline{G} is $(2P_2, K_4)$ -free.

An Application

Theorem (S. Gaspers, H., 18)

There exists a 2-approximation algorithm for coloring $(4P_1, C_4)$ -free graphs.

Proof

Let *G* be a $(4P_1, C_4)$ -free graph. Then \overline{G} is $(2P_2, K_4)$ -free.

By our main theorem, we have that Ḡ can be partitioned into 4 stable sets. So, G can be partitioned into 4 cliques K_i for 1 ≤ i ≤ 4.

An Application

Theorem (S. Gaspers, H., 18)

There exists a 2-approximation algorithm for coloring $(4P_1, C_4)$ -free graphs.

Proof

Let *G* be a $(4P_1, C_4)$ -free graph. Then \overline{G} is $(2P_2, K_4)$ -free.

- By our main theorem, we have that Ḡ can be partitioned into 4 stable sets. So, G can be partitioned into 4 cliques K_i for 1 ≤ i ≤ 4.
- Since G is C₄-free, both G[K₁ ∪ K₂] and G[K₃ ∪ K₄] are chordal.

An Application

Theorem (S. Gaspers, H., 18)

There exists a 2-approximation algorithm for coloring $(4P_1, C_4)$ -free graphs.

Proof

Let *G* be a $(4P_1, C_4)$ -free graph. Then \overline{G} is $(2P_2, K_4)$ -free.

- By our main theorem, we have that Ḡ can be partitioned into 4 stable sets. So, G can be partitioned into 4 cliques K_i for 1 ≤ i ≤ 4.
- Since G is C_4 -free, both $G[K_1 \cup K_2]$ and $G[K_3 \cup K_4]$ are chordal.
- ► The value \(\chi(G[K₁ ∪ K₂]) + \(\chi(G[K₃ ∪ K₄])\) provides a 2-approximation.

Theorem (S. Gaspers, H., 18)

Every $(2P_2, K_4)$ -free graph is 4-colorable.

High level idea:

Shenwei Huang (Nankai University)

Theorem (S. Gaspers, H., 18)

Every $(2P_2, K_4)$ -free graph is 4-colorable.

High level idea:

- Reduce to C₅-free graphs and then use a theorem of Chudnovsky, Robertson, Seymour and Thomas.
- M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas.

ヘロン 人間 とくほ とくほ とう

э.

*K*₄-free graphs with no odd holes. *J. Combin. Theory, Ser. B*, 100:313–331, 2010.

Need to do this in a series of four steps.

Shenwei Huang (Nankai University)

Need to do this in a series of four steps.

• If G contains an H_1 , the theorem holds.

Need to do this in a series of four steps.

- ▶ If *G* contains an *H*₁, the theorem holds.
- ▶ If *G* contains an *H*₂, the theorem holds.

Need to do this in a series of four steps.

- ▶ If *G* contains an *H*₁, the theorem holds.
- ▶ If *G* contains an *H*₂, the theorem holds.
- ▶ If *G* contains a *W*₅, the theorem holds.

Difficulty

Need to do this in a series of four steps.

- ▶ If *G* contains an *H*₁, the theorem holds.
- ▶ If *G* contains an *H*₂, the theorem holds.
- ▶ If *G* contains a *W*₅, the theorem holds.
- ▶ If *G* contains a *C*₅, the theorem holds.

Shenwei Huang (Nankai University)

Future Research

Shenwei Huang (Nankai University)

・ロト ・聞ト ・ヨト ・ヨト

Future Research

Open

- What is the optimal χ-bounding function for 2P₂-free graphs? ω^{1+ε}?
- What is the optimal χ-bounding function when ω = 4? → 5 ≤ χ ≤ 10.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●