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Graph Coloring

Given a graph G = (V,E), a function φ : V(G)→ {1, 2, . . . , k} is
a k-coloring of G if φ(u) 6= φ(v) whenever uv ∈ E(G).

The chromatic number of a graph G, denoted by χ(G), is the
smallest k such that G has a k-coloring.

Figure: χ(H) = 4.
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Clique Number

Let G = (V,E) be graph. A clique of G is a subset K of vertices
such that every two vertices in K are adjacent. The size of K is
the number of vertices in K.

The clique number of G, denoted by ω(G), is the size of a
largest clique of G.

Observation
For any graph G, χ(G) ≥ ω(G).
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χ-Bounded

Observation
For any graph G, χ(G) ≥ ω(G).

Question
Can we upper bound χ(G) in terms of a function of ω(G)?

I χ ≤ 2ω?
I χ ≤ ω2?
I χ ≤ 2ω?

No! Myceilsky Construction.
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χ-Bounded

Special Graph Classes.

A class G of graphs is χ-bounded if there exists a function f
such that χ(G) ≤ f (ω(G)) for every graph G ∈ G. The function f
is called a χ-bounding function for G.

Example
I Bipartite graphs: χ = ω = 2. → f (x) = x.
I Berge graphs: χ = ω. (Strong Perfect Graph Theorem.)
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H-Free Graphs

A graph is H-free if it does not contain H as an induced
subgraph.

Gyárfás Conjecture 1975
For every forest T, the class of T-free graphs is χ-bounded.

Known
I paths (Gyárfás 1987)
I trees of radius at most 2 (Kierstead and Penrise 1994)
I special trees of radius at most 3 (Kierstead and Zhu 2004)
I Two-legged caterpillars and double-headed brooms

(Chudnovsky, Scott and Seymour 2017)
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Our Interests

We are interested in 2P2-free graphs.

Figure: 2P2.

Wagon 1980 JCTB

Let G be a 2P2-free graph. Then χ ≤
(
ω+1

2

)
.

Proof. Choose a maximum clique K and show that G can be
partitioned into

(
ω
2

)
+ ω =

(
ω+1

2

)
stable sets.

Questions by Wagon
I What is the optimal χ-bounding function?
I What is the optimal bound when ω = 3?
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The Main Result

If ω = 3, we know that

I χ ≤ 6 by Wagon 1980.
I χ ≤ 5 by Esperet, Lemoine, Maffray and Morel 2013.

Theorem (S. Gaspers, H., 18)

Every (2P2,K4)-free graph is 4-colorable.

I The bound is optimal: W5 and C7.
I The bound is a Vizing-type bound.
I Our proof is algorithmic.
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An Application

I Determining χ(G) for a graph G is NP-complete.
I Numerous studies on H-free graphs.

P. A. Golovach, M. Johnson, D. Paulusma, and J. Song. A
survey on the computational complexity of coloring graphs
with forbidden subgraphs.
J. Graph Theory, 84:331–363, 2017.

Three Open Problems for (H1,H2)-Free Graphs
I (4P1,C4).
I (4P1,K1,3).
I (4P1,P2 + 2P1,K1,3).
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An Application

Theorem (S. Gaspers, H., 18)

There exists a 2-approxmiation algorithm for coloring
(4P1,C4)-free graphs.

Proof

Let G be a (4P1,C4)-free graph. Then G is (2P2,K4)-free.
I By our main theorem, we have that G can be partitioned

into 4 stable sets. So, G can be partitioned into 4 cliques Ki

for 1 ≤ i ≤ 4.
I Since G is C4-free, both G[K1 ∪ K2] and G[K3 ∪ K4] are

chordal.
I The value χ(G[K1 ∪ K2]) + χ(G[K3 ∪ K4]) provides a

2-approximation.
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Proof Sketch

Theorem (S. Gaspers, H., 18)

Every (2P2,K4)-free graph is 4-colorable.

High level idea:

I Reduce to C5-free graphs and then use a theorem of
Chudnovsky, Robertson, Seymour and Thomas.

M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas.

K4-free graphs with no odd holes.
J. Combin. Theory, Ser. B, 100:313–331, 2010.
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Difficulty

w

2

63

1
45

H1

1

2

34

5 t

H2

Need to do this in a series of four steps.

I If G contains an H1, the theorem holds.
I If G contains an H2, the theorem holds.
I If G contains a W5, the theorem holds.
I If G contains a C5, the theorem holds.
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Future Research

Open
I What is the optimal χ-bounding function for 2P2-free

graphs? ω1+ε?
I What is the optimal χ-bounding function when ω = 4?
→ 5 ≤ χ ≤ 10.
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