$(2P_2, K_4)$ -Free Graphs are 4-Colorable

Serge Gaspers¹ Shenwei Huang²

¹ School of Computer Science and Engineering, University of New South Wales

²College of Computer Science, Nankai University

The 10th Cross-strait Conference on Graph Theory and **Combinatorics** Taiwan, 22 August 2019

K ロ ト K 伺 ト K ヨ ト K ヨ ト

 2990

Shenwei Huang (Nankai University)

メロメメ 御きメ ミカメ モド

÷. 2990

Graph Coloring

Shenwei Huang (Nankai University)

メロトメ 御 トメ 君 トメ 君 トッ

重。 2990

Graph Coloring

Given a graph $G = (V, E)$, a function $\phi : V(G) \rightarrow \{1, 2, \ldots, k\}$ is a *k*-coloring of *G* if $\phi(u) \neq \phi(v)$ whenever $uv \in E(G)$.

イロト イ押 トイヨ トイヨ トー

÷.

 $2Q$

Graph Coloring

Given a graph $G = (V, E)$, a function $\phi : V(G) \rightarrow \{1, 2, \ldots, k\}$ is a *k*-coloring of *G* if $\phi(u) \neq \phi(v)$ whenever $uv \in E(G)$.

The *chromatic number* of a graph *G*, denoted by $\chi(G)$, is the smallest *k* such that *G* has a *k*-coloring.

イロメ イ押メ イヨメ イヨメー

÷. QQ

Graph Coloring

Given a graph $G = (V, E)$, a function $\phi : V(G) \rightarrow \{1, 2, \ldots, k\}$ is a *k*-coloring of *G* if $\phi(u) \neq \phi(v)$ whenever $uv \in E(G)$.

The *chromatic number* of a graph *G*, denoted by $\chi(G)$, is the smallest *k* such that *G* has a *k*-coloring.

イロト イ押 トイヨ トイヨト

B

 $2Q$

Clique Number

Let $G = (V, E)$ be graph. A *clique* of G is a subset K of vertices such that every two vertices in *K* are adjacent. The *size* of *K* is the number of vertices in *K*.

イロメ イ押 メイヨメ イヨメ

÷. QQ

Clique Number

Let $G = (V, E)$ be graph. A *clique* of G is a subset K of vertices such that every two vertices in *K* are adjacent. The *size* of *K* is the number of vertices in *K*.

イロメ イ押 メイヨメ イヨメ

 QQ э

The *clique number* of *G*, denoted by $\omega(G)$, is the size of a largest clique of *G*.

Clique Number

Let $G = (V, E)$ be graph. A *clique* of G is a subset K of vertices such that every two vertices in *K* are adjacent. The *size* of *K* is the number of vertices in *K*.

イロメ イ押 メイヨメ イヨメ

ă. QQ

The *clique number* of *G*, denoted by $\omega(G)$, is the size of a largest clique of *G*.

Observation

For any graph G, $\chi(G) \geq \omega(G)$.

Observation

For any graph G, $\chi(G) \geq \omega(G)$ *.*

Question

Can we upper bound $\chi(G)$ in terms of a function of $\omega(G)$?

4 ロ) (何) (日) (日)

B

 $2Q$

- $\blacktriangleright \ \chi \leq 2\omega$?
- $\blacktriangleright \ \chi \leq \omega^2$?
- $\blacktriangleright \chi \leq 2^{\omega}$?

Observation

For any graph G, χ (*G*) $\geq \omega$ (*G*).

Question

Can we upper bound $\chi(G)$ in terms of a function of $\omega(G)$?

K ロ ト K 伺 ト K ヨ ト K ヨ ト

B

 $2Q$

- $\blacktriangleright \ \chi \leq 2\omega$?
- $\blacktriangleright \ \chi \leq \omega^2$?
- $\blacktriangleright \chi \leq 2^{\omega}$?

No! Myceilsky Construction.

Special Graph Classes.

A class G of graphs is χ -bounded if there exists a function f such that $\chi(G) \leq f(\omega(G))$ for every graph $G \in \mathcal{G}$. The function *f* is called a χ -bounding function for \mathcal{G} .

イロメ イ押 メイヨメ イヨメ

÷. QQ

Special Graph Classes.

A class $\mathcal G$ of graphs is χ -bounded if there exists a function f such that $\chi(G) \leq f(\omega(G))$ for every graph $G \in \mathcal{G}$. The function f is called a χ -bounding function for \mathcal{G} .

Example

- Bipartite graphs: $\chi = \omega = 2$. $\rightarrow f(x) = x$.
- Berge graphs: $\chi = \omega$. (Strong Perfect Graph Theorem.)

≮ロト ⊀伊 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

÷. QQ

H-Free Graphs

A graph is *H*-free if it does not contain *H* as an induced subgraph.

イロト 不優 トイモト 不思 トー

重。 2990

H-Free Graphs

A graph is *H*-free if it does not contain *H* as an induced subgraph.

Gyárfás Conjecture 1975

For every forest *T*, the class of *T*-free graphs is χ -bounded.

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ ...

÷. QQ

H-Free Graphs

A graph is *H*-free if it does not contain *H* as an induced subgraph.

Gyárfás Conjecture 1975

For every forest *T*, the class of *T*-free graphs is χ -bounded.

Known

- \triangleright paths (Gyárfás 1987)
- \triangleright trees of radius at most 2 (Kierstead and Penrise 1994)
- \triangleright special trees of radius at most 3 (Kierstead and Zhu 2004)

イロメ イ押 メイヨメ イヨメ

ă.

 $2Q$

 \triangleright Two-legged caterpillars and double-headed brooms (Chudnovsky, Scott and Seymour 2017)

Our Interests

We are interested in 2P₂-free graphs.

Į Î Figure: $2P_2$.

イロト 不優 トメ 君 トメ 君 トー

重。 2990

Our Interests

We are interested in $2P₂$ -free graphs.

Figure: 2P₂.

Wagon 1980 JCTB

Let *G* be a $2P_2$ -free graph. Then $\chi \leq {\omega+1 \choose 2}$ $_{2}^{+1}$).

Proof. Choose a maximum clique *K* and show that *G* can be partitioned into $\binom{w}{2}$ $\binom{\omega}{2} + \omega = \binom{\omega + 1}{2}$ $_2^{+1}$) stable sets.

イロン イ何 メイヨン イヨン 一ヨー

 QQ

Our Interests

We are interested in $2P₂$ -free graphs.

Figure: 2P₂.

Wagon 1980 JCTB

Let *G* be a $2P_2$ -free graph. Then $\chi \leq {\omega+1 \choose 2}$ $_{2}^{+1}$).

Proof. Choose a maximum clique *K* and show that *G* can be partitioned into $\binom{w}{2}$ $\binom{\omega}{2} + \omega = \binom{\omega + 1}{2}$ $_2^{+1}$) stable sets.

 $Q \cap C$

Questions by Wagon

- In What is the optimal χ -bounding function?
- **I** What is the optimal bound when $\omega = 3$ [?](#page-17-0)

Shenwei Huang (Nankai University)

The Main Result

- If $\omega = 3$, we know that
	- $\blacktriangleright \ \chi \leq 6$ by Wagon 1980.
	- \triangleright χ < 5 by Esperet, Lemoine, Maffray and Morel 2013.

イロト イ何 トイヨ トイヨ ト

重 $2Q$

The Main Result

If $\omega = 3$, we know that

- \blacktriangleright χ < 6 by Wagon 1980.
- \triangleright χ < 5 by Esperet, Lemoine, Maffray and Morel 2013.

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ ...

重し 200

Theorem (S. Gaspers, H., 18)

Every (2*P*2, *K*4)*-free graph is 4-colorable.*

The Main Result

If $\omega = 3$, we know that

- \blacktriangleright χ < 6 by Wagon 1980.
- \triangleright χ < 5 by Esperet, Lemoine, Maffray and Morel 2013.

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ ...

÷. QQ

Theorem (S. Gaspers, H., 18)

Every (2*P*2, *K*4)*-free graph is 4-colorable.*

If The bound is optimal: W_5 and $\overline{C_7}$.

The Main Result

If $\omega = 3$, we know that

- \blacktriangleright χ < 6 by Wagon 1980.
- \triangleright χ < 5 by Esperet, Lemoine, Maffray and Morel 2013.

イロト イ押 トイヨ トイヨ トー

 QQ

Theorem (S. Gaspers, H., 18)

Every (2*P*2, *K*4)*-free graph is 4-colorable.*

- If The bound is optimal: W_5 and $\overline{C_7}$.
- \blacktriangleright The bound is a Vizing-type bound.
- \triangleright Our proof is algorithmic.

An Application

- **Determining** $\chi(G)$ for a graph G is NP-complete.
- \blacktriangleright Numerous studies on *H*-free graphs.

P. A. Golovach, M. Johnson, D. Paulusma, and J. Song. A survey on the computational complexity of coloring graphs with forbidden subgraphs.

イロメ イ押 メイヨメ イヨメ

 QQ э

J. Graph Theory, 84:331–363, 2017.

An Application

- **Determining** $\chi(G)$ for a graph G is NP-complete.
- \blacktriangleright Numerous studies on *H*-free graphs.

P. A. Golovach, M. Johnson, D. Paulusma, and J. Song. A survey on the computational complexity of coloring graphs with forbidden subgraphs.

イロメ イ押 メイヨメ イヨメ

ă

 $2Q$

J. Graph Theory, 84:331–363, 2017.

Three Open Problems for (H_1, H_2) -Free Graphs

- \blacktriangleright (4*P*₁, *C*₄).
- \blacktriangleright (4*P*₁, *K*_{1,3}).
- \blacktriangleright (4*P*₁, *P*₂ + 2*P*₁, *K*_{1,3}).

An Application

Theorem (S. Gaspers, H., 18)

There exists a 2-approxmiation algorithm for coloring $(4P_1, C_4)$ -free graphs.

イロト イ押 トイヨ トイヨ トー

ミー $2Q$

An Application

Theorem (S. Gaspers, H., 18)

There exists a 2-approxmiation algorithm for coloring $(4P_1, C_4)$ -free graphs.

Proof

Let *G* be a $(4P_1, C_4)$ -free graph. Then \overline{G} is $(2P_2, K_4)$ -free.

An Application

Theorem (S. Gaspers, H., 18)

There exists a 2-approxmiation algorithm for coloring $(4P_1, C_4)$ -free graphs.

Proof

Let *G* be a $(4P_1, C_4)$ -free graph. Then \overline{G} is $(2P_2, K_4)$ -free.

By our main theorem, we have that \overline{G} can be partitioned into 4 stable sets. So, *G* can be partitioned into 4 cliques *Kⁱ* for $1 < i < 4$.

An Application

Theorem (S. Gaspers, H., 18)

There exists a 2-approxmiation algorithm for coloring $(4P_1, C_4)$ -free graphs.

Proof

Let *G* be a $(4P_1, C_4)$ -free graph. Then \overline{G} is $(2P_2, K_4)$ -free.

- By our main theorem, we have that \overline{G} can be partitioned into 4 stable sets. So, *G* can be partitioned into 4 cliques *Kⁱ* for $1 < i < 4$.
- ► Since *G* is C_4 -free, both $G[K_1 \cup K_2]$ and $G[K_3 \cup K_4]$ are chordal.

An Application

Theorem (S. Gaspers, H., 18)

There exists a 2-approxmiation algorithm for coloring $(4P_1, C_4)$ -free graphs.

Proof

Let *G* be a $(4P_1, C_4)$ -free graph. Then \overline{G} is $(2P_2, K_4)$ -free.

- By our main theorem, we have that \overline{G} can be partitioned into 4 stable sets. So, *G* can be partitioned into 4 cliques *Kⁱ* for $1 < i < 4$.
- ► Since *G* is C_4 -free, both $G[K_1 \cup K_2]$ and $G[K_3 \cup K_4]$ are chordal.
- ► The value $\chi(G[K_1 \cup K_2]) + \chi(G[K_3 \cup K_4])$ $\chi(G[K_1 \cup K_2]) + \chi(G[K_3 \cup K_4])$ $\chi(G[K_1 \cup K_2]) + \chi(G[K_3 \cup K_4])$ provides a 2-approximation.

Theorem (S. Gaspers, H., 18)

Every (2*P*2, *K*4)*-free graph is 4-colorable.*

High level idea:

Shenwei Huang (Nankai University)

イロト 不優 トイモト 不思 トー

重し $2Q$

Theorem (S. Gaspers, H., 18)

Every $(2P_2, K_4)$ -free graph is 4-colorable.

High level idea:

- \triangleright Reduce to C_5 -free graphs and then use a theorem of Chudnovsky, Robertson, Seymour and Thomas.
- M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas.

イロメ イ押 メイヨメ イヨメ

 QQ

*K*4-free graphs with no odd holes. *J. Combin. Theory, Ser. B*, 100:313–331, 2010.

Need to do this in a series of four steps.

 290

Shenwei Huang (Nankai University)

Need to do this in a series of four steps.

If *G* contains an H_1 , the theorem holds.

Need to do this in a series of four steps.

- If *G* contains an H_1 , the theorem holds.
- If *G* contains an H_2 , the theorem holds.

Need to do this in a series of four steps.

- If *G* contains an H_1 , the theorem holds.
- If *G* contains an H_2 , the theorem holds.
- If *G* contains a W_5 , the theorem holds.

Need to do this in a series of four steps.

- If *G* contains an H_1 , the theorem holds.
- If *G* contains an H_2 , the theorem holds.
- If *G* contains a W_5 , the theorem holds.
- If *G* contains a C_5 , the theorem holds.

Shenwei Huang (Nankai University)

Future Research

Shenwei Huang (Nankai University)

メロメメ 御きメ 老き メ 悪き し

 $E = \Omega Q$

Future Research

Open

- **IDED** What is the optimal *χ*-bounding function for $2P_2$ -free graphs? $\omega^{1+\epsilon}$?
- What is the optimal χ -bounding function when $\omega = 4$? \rightarrow 5 $\leq \chi \leq 10$.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 \equiv Ω