Critical permutation sets for generalized of signed graph coloring

Hao Qi 1 Tsai-Lien Wong ${ }^{2}$ Xuding Zhu ${ }^{3}$

${ }^{1}$ Academia Sinica
${ }^{2}$ National Sun Yat-sen University
${ }^{3}$ Zhejiang Normal University

August. 20 / Academia Sinica
(1) Introduction

- Coloring
- Signed coloring
(2) Critical permutation set
- Generalized signed coloring
- S is Critical
(3) Results
- $S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical
- $\Gamma_{1} \times \Gamma_{2} \ldots \times \Gamma_{q}$ is critical
(4) Summary

Outline
(1) Introduction

- Coloring
- Signed coloring
(2) Critical permutation set
- Generalized signed coloring
- S is Critical
(3) Results
- $S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical
- $\Gamma_{1} \times \Gamma_{2} \ldots \times \Gamma_{q}$ is critical
(4) Summary

A k-coloring of a graph G is a mapping $\varphi: V(G) \rightarrow[k]$ such that $\varphi(u) \neq \varphi(v)$ for any edge $e=u v \in E(G)$.

A k-coloring of a graph G is a mapping $\varphi: V(G) \rightarrow[k]$ such that $\varphi(u) \neq \varphi(v)$ for any edge $e=u v \in E(G)$.

A k-list coloring of G is a k-coloring φ such that $\varphi(v) \in L(v)$ for any $v \in V(G)$, where L is a mapping $L: V(G) \rightarrow \mathbb{N}$ and $|L(v)|=k$.

Outline

(1) Introduction

- Coloring
- Signed coloring
(2) Critical permutation set
- Generalized signed coloring
- S is Critical
(3) Results
- $S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{9}}$ is critical
- $\Gamma_{1} \times \Gamma_{2} \ldots \times \Gamma_{q}$ is critical

4 Summary

Signed graph

A signed graph is a pair (G, σ), where G is a graph and $\sigma: E(G) \rightarrow\{1,-1\}$ is a mapping which assigns to each edge e a sign σ_{e}.

MRS-Z- k-coloring

For an integer k, let $N_{k}= \begin{cases}\{0, \pm 1, \pm 2, \ldots, \pm r\}, & \text { if } k=2 r+1, \\ \{ \pm 1, \pm 2, \ldots, \pm r\}, & \text { if } k=2 r .\end{cases}$
A MRS-Z-k-coloring of a signed graph (G, σ) is a mapping $\varphi: V(G) \rightarrow N_{k}$ such that $\varphi(u) \neq \sigma_{e}(\varphi(v))$ for any $u v=e \in E(G)$.

\% T. Zaslavsky. Signed graph coloring. Discrete Math.,39(2): 215-228, 1982.
E. Máčajová, A. Raspaud, M. Škoviera.The chromatic number of a signed graph. Electron.
J. Combin. 23 (1) (2016) \#P1.14.

MRS-Z- k-coloring

KS- k-coloring

A $K S$-k-coloring of (G, σ) is a mapping $\varphi: V \rightarrow \mathbb{Z}_{k}$ such that $\varphi(u) \neq \sigma_{e}(\varphi(v))$ for any $u v=e \in E(G)$.

Y. Kang and E. Steffen. The chromatic spectrum of signed graphs. Discrete Math., 339: 2660-2663, 2016.
Y. Kang and E. Steffen. Circular coloring of signed graphs. J. Graph Theory, 87(2): 135-148, 2018.

MRS-Z- k-coloring V.S. KS- k-coloring

MRS-Z-4-coloring

KS-4-coloring

Application in Four color Theorem

Máčajová, Raspaud and Škoviera (2016) conjectures that every signed planar graph MRS-Z-4-colorable. Recently, František Kardoš and Jonathan Narboni disprove the conjecture.

Every signed planar graph is KS-4-colorable?

Application in Four color Theorem

Máčajová, Raspaud and Škoviera (2016) conjectures that every signed planar graph MRS-Z-4-colorable. Recently, František Kardoš and Jonathan Narboni disprove the conjecture.

Every signed planar graph is KS-4-colorable?

A complex 4-coloring of a signed graph (G, σ) is a mapping $\varphi: V(G) \rightarrow\{1,-1$, $i,-i\}$ such that $\varphi(u) \varphi(v) \neq \sigma(e)$ for any $u v=e \in E(G)$.

Every signed planar graph is complex 4-colorable?
※ F. Kardoš, J. Narboni, On the 4-color theorem for signed graphs, arXiv:1906.09638v1.
L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint, 2019+

Outline

(1) Introduction

- Coloring
- Signed coloring
(2) Critical permutation set
- Generalized signed coloring
- S is Critical
(3) Results
- $S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical
- $\Gamma_{1} \times \Gamma_{2} \ldots \times \Gamma_{q}$ is critical
(4) Summary

Generalized signed graph

What about graph with more than 2-types of edge?

- S_{k} is a symmetric group of order k and $S \subseteq S_{k}$.
- $D(G)$ is a directed graph of G.
- $\sigma: E(D(G)) \rightarrow S$ is a mapping which assigns to any \vec{e} a $\operatorname{sign} \sigma \vec{e}$

To convenient, we define $\sigma_{\vec{e}} \cdot \sigma_{\overleftarrow{e}}=i d$, and we view G as a symmetric digraph.
Definition (Generalized signed graph)
Assume S is a inverse closed subset of S_{k}. An S-signature of G is a mapping $\sigma: E(G) \rightarrow S$ such that $\sigma_{\vec{e}} \cdot \sigma_{\overleftarrow{e}}=i d$. The pair (G, σ) is called an S-signed graph.

Generalized signed graph

What about graph with more than 2-types of edge?

- S_{k} is a symmetric group of order k and $S \subseteq S_{k}$.
- $D(G)$ is a directed graph of G.

To convenient, we define $\sigma_{\vec{e}} \cdot \sigma_{\overleftarrow{e}}=i d$, and we view G as a symmetric digraph.
Definition (Generalized signed graph)
Assume S is a inverse closed subset of S_{k}. An S-signature of G is a mapping $\sigma: E(G) \rightarrow S$ such that $\sigma_{\vec{e}} \cdot \sigma_{\overleftarrow{e}}=i d$. The pair (G, σ) is called an S-signed graph.

Generalized signed graph

What about graph with more than 2-types of edge?

- S_{k} is a symmetric group of order k and $S \subseteq S_{k}$.
- $D(G)$ is a directed graph of G.
- $\sigma: E(D(G)) \rightarrow S$ is a mapping which assigns to any \vec{e} a sign $\sigma_{\vec{e}}$.

To convenient, we define $\sigma_{\vec{e}} \cdot \sigma_{\overleftarrow{e}}=i d$, and we view G as a symmetric digraph.
Definition (Generalized signed graph)
Assume S is a inverse closed subset of S_{k}. An S-signature of G is a mapping $\sigma: E(G) \rightarrow S$ such that $\sigma_{\vec{e}} \cdot \sigma_{\overleftarrow{e}}=i d$. The pair (G, σ) is called an S-signed graph.

Generalized signed graph

What about graph with more than 2-types of edge?

- S_{k} is a symmetric group of order k and $S \subseteq S_{k}$.
- $D(G)$ is a directed graph of G.
- $\sigma: E(D(G)) \rightarrow S$ is a mapping which assigns to any \vec{e} a sign $\sigma_{\vec{e}}$.

To convenient, we define $\sigma_{\vec{e}} \cdot \sigma_{\overleftarrow{e}}=i d$, and we view G as a symmetric digraph.

Definition (Generalized signed graph)

Assume S is a inverse closed subset of S_{k}. An S-signature of G is a mapping $\sigma: E(G) \rightarrow S$ such that $\sigma_{\vec{e}} \cdot \sigma_{\overleftarrow{e}}=i d$. The pair (G, σ) is called an S-signed graph.

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph $(G, \sigma), S$ - k-coloring of (G, σ) is a mapping: $\varphi: V(G) \rightarrow[k]$ such that $\varphi(u) \neq \sigma_{e}(\varphi(v))$ for any $u v=e \in E(G)$.
G is S-k-colorable if for any S-signature $\sigma,(G, \sigma)$ has an S - k-coloring.
L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

F F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-A non-homongenous analogue of nowwhere-zero, J. combin. Theory Ser B 56: 165-182, 1992.

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph $(G, \sigma), S$-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \rightarrow[k]$ such that $\varphi(u) \neq \sigma_{e}(\varphi(v))$ for any $u v=e \in E(G)$.
G is S-k-colorable if for any S-signature $\sigma,(G, \sigma)$ has an S - k-coloring.

- $S=\{i d\}, S$ - k-coloring $\Longleftrightarrow k$-coloring.

E L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

F F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-A non-homongenous analogue of nowwhere-zero, J. combin. Theory Ser B 56: 165-182, 1992.

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph $(G, \sigma), S$-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \rightarrow[k]$ such that $\varphi(u) \neq \sigma_{e}(\varphi(v))$ for any $u v=e \in E(G)$.
G is S-k-colorable if for any S-signature $\sigma,(G, \sigma)$ has an S - k-coloring.

- $S=\{i d\}, S$ - k-coloring $\Longleftrightarrow k$-coloring.
- $S=\{i d,(12)(34) \ldots(2 r-12 r)\}$,
$r=\lfloor k / 2\rfloor, S$ - k-coloring \Longleftrightarrow MRS-Z- k-coloring;
$r=\lceil k / 2\rceil-1, S$ - k-coloring $\Longleftrightarrow \mathrm{KS}$ - k-coloring.
L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.
F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-A non-homongenous analogue of nowwhere-zero, J. combin. Theory Ser B 56: 165-182, 1992.

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph $(G, \sigma), S$-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \rightarrow[k]$ such that $\varphi(u) \neq \sigma_{e}(\varphi(v))$ for any $u v=e \in E(G)$.
G is S-k-colorable if for any S-signature $\sigma,(G, \sigma)$ has an S - k-coloring.

- $S=\{i d\}, S$ - k-coloring $\Longleftrightarrow k$-coloring.
- $S=\{i d,(12)(34) \ldots(2 r-12 r)\}$,
$r=\lfloor k / 2\rfloor, S$ - k-coloring \Longleftrightarrow MRS-Z- k-coloring;
$r=\lceil k / 2\rceil-1, S$ - k-coloring $\Longleftrightarrow \mathrm{KS}$ - k-coloring.
- $S=\{i d,(12)(34)\}, S$-4-coloring \Longleftrightarrow MRS-Z-4-coloring;
L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.
F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-A non-homongenous analogue of nowwhere-zero, J. combin. Theory Ser B 56: 165-182, 1992.

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph $(G, \sigma), S$-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \rightarrow[k]$ such that $\varphi(u) \neq \sigma_{e}(\varphi(v))$ for any $u v=e \in E(G)$.
G is S-k-colorable if for any S-signature $\sigma,(G, \sigma)$ has an S - k-coloring.

- $S=\{i d\}, S$ - k-coloring $\Longleftrightarrow k$-coloring.
- $S=\{i d,(12)(34) \ldots(2 r-12 r)\}$,
$r=\lfloor k / 2\rfloor, S$ - k-coloring \Longleftrightarrow MRS-Z- k-coloring;
$r=\lceil k / 2\rceil-1, S$ - k-coloring $\Longleftrightarrow \mathrm{KS}$ - k-coloring.
- $S=\{i d,(12)(34)\}, S$-4-coloring \Longleftrightarrow MRS-Z-4-coloring;
- $S=\{i d,(12)\}, S$-4-coloring \Longleftrightarrow KS-4-coloring;
L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.
F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-A non-homongenous analogue of nowwhere-zero, J. combin. Theory Ser B 56: 165-182, 1992.

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph $(G, \sigma), S$-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \rightarrow[k]$ such that $\varphi(u) \neq \sigma_{e}(\varphi(v))$ for any $u v=e \in E(G)$.
G is S-k-colorable if for any S-signature $\sigma,(G, \sigma)$ has an S - k-coloring.

- $S=\{i d\}, S$ - k-coloring $\Longleftrightarrow k$-coloring.
- $S=\{i d,(12)(34) \ldots(2 r-12 r)\}$,
$r=\lfloor k / 2\rfloor, S$ - k-coloring \Longleftrightarrow MRS-Z- k-coloring;
$r=\lceil k / 2\rceil-1, S$ - k-coloring $\Longleftrightarrow \mathrm{KS}$ - k-coloring.
- $S=\{$ id, (12)(34) $\}, S$-4-coloring \Longleftrightarrow MRS-Z-4-coloring;
- $S=\{i d,(12)\}, S$-4-coloring \Longleftrightarrow KS-4-coloring;
- $S=\{(12),(34)\}, S$-4-coloring \Longleftrightarrow complex-4-coloring.
L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.
F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-A non-homongenous analogue of nowwhere-zero, J. combin. Theory Ser B 56: 165-182, 1992.

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph $(G, \sigma), S$-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \rightarrow[k]$ such that $\varphi(u) \neq \sigma_{e}(\varphi(v))$ for any $u v=e \in E(G)$.
G is S - k-colorable if for any S-signature $\sigma,(G, \sigma)$ has an S - k-coloring.

- $S=\{i d\}, S$ - k-coloring $\Longleftrightarrow k$-coloring.
- $S=\{i d,(12)(34) \ldots(2 r-12 r)\}$,
$r=\lfloor k / 2\rfloor, S$ - k-coloring \Longleftrightarrow MRS-Z- k-coloring;
$r=\lceil k / 2\rceil-1, S$ - k-coloring $\Longleftrightarrow \mathrm{KS}$ - k-coloring.
- $S=\{i d,(12)(34)\}, S$-4-coloring \Longleftrightarrow MRS-Z-4-coloring;
- $S=\{i d,(12)\}, S$-4-coloring \Longleftrightarrow KS-4-coloring;
- $S=\{(12),(34)\}, S$-4-coloring \Longleftrightarrow complex-4-coloring.
- $S=\mathbb{Z}_{k}, S$ - k-coloring \Longleftrightarrow group coloring.
L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.
F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-A non-homongenous analogue of nowwhere-zero, J. combin. Theory Ser B 56: 165-182, 1992.

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph $(G, \sigma), S$ - k-coloring of (G, σ) is a mapping: $\varphi: V(G) \rightarrow[k]$ such that $\varphi(u) \neq \sigma_{e}(\varphi(v))$ for any $u v=e \in E(G)$.
G is S - k-colorable if for any S-signature $\sigma,(G, \sigma)$ has an S - k-coloring.

- $S=\{i d\}, S$ - k-coloring $\Longleftrightarrow k$-coloring.
- $S=\{i d,(12)(34) \ldots(2 r-12 r)\}$,
$r=\lfloor k / 2\rfloor, S$ - k-coloring \Longleftrightarrow MRS-Z- k-coloring;
$r=\lceil k / 2\rceil-1, S$ - k-coloring \Longleftrightarrow KS- k-coloring.
- $S=\{i d,(12)(34)\}, S$-4-coloring \Longleftrightarrow MRS-Z-4-coloring;
- $S=\{i d,(12)\}, S$-4-coloring \Longleftrightarrow KS-4-coloring;
- $S=\{(12),(34)\}, S$-4-coloring \Longleftrightarrow complex-4-coloring.
- $S=\mathbb{Z}_{k}, S$ - k-coloring \Longleftrightarrow group coloring.
- $S=S_{k}, S$ - k-coloring \Longleftrightarrow DP- k-coloring.
L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.
F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-A non-homongenous analogue of nowwhere-zero, J. combin. Theory Ser B 56: 165-182, 1992.

DP- k-coloring

- $S=S_{k}, S$ - k-coloring \Longleftrightarrow DP- k-coloring.

Vertex $v \in V(G)$ is associated with a set of k-colors $\{(v, 1),(v, 2), \ldots,(v, k)\}$, $u v=e$ is associated with a matching M_{e} between $\{(u, 1),(u, 2), \ldots,(u, k)\}$ and $\{(v, 1),(v, 2), \ldots,(v, k)\}$, restrict colors of u and v for coloring. E.g. $k=5$:

- M_{e} is consistent and a perfect matchin
- If for any cycle $C=\left(e_{1} e_{2} \ldots e_{p}\right)$ of $(G$
then S - k-coloring $\Longleftrightarrow k$-list coloring.
Z. Dvořák, L. Postle. Correspondence coloring and its application to list-col oring planar graphs without cycles of lengths 4 to 8. JCTB, 129: 38-54, 2018.

DP- k-coloring

- $S=S_{k}, S$ - k-coloring \Longleftrightarrow DP- k-coloring.

Vertex $v \in V(G)$ is associated with a set of k-colors $\{(v, 1),(v, 2), \ldots,(v, k)\}$, $u v=e$ is associated with a matching M_{e} between $\{(u, 1),(u, 2), \ldots,(u, k)\}$ and $\{(v, 1),(v, 2), \ldots,(v, k)\}$, restrict colors of u and v for coloring. E.g. $k=5$:

- M_{e} is consistent and a perfect matching, DP- k-coloring $\Longleftrightarrow k$-list coloring then S - k-coloring $\Longleftrightarrow k$-list coloring.

Z Z. Dvořák, L. Postle. Correspondence coloring and its application to list-col oring planar graphs without cycles of lengths 4 to 8. JCTB, 129: 38-54, 2018.

DP- k-coloring

- $S=S_{k}, S$ - k-coloring \Longleftrightarrow DP- k-coloring.

Vertex $v \in V(G)$ is associated with a set of k-colors $\{(v, 1),(v, 2), \ldots,(v, k)\}$, $u v=e$ is associated with a matching M_{e} between $\{(u, 1),(u, 2), \ldots,(u, k)\}$ and $\{(v, 1),(v, 2), \ldots,(v, k)\}$, restrict colors of u and v for coloring. E.g. $k=5$:

- M_{e} is consistent and a perfect matching, DP- k-coloring $\Longleftrightarrow k$-list coloring
- If for any cycle $C=\left(e_{1} e_{2} \ldots e_{p}\right)$ of (G, σ) satisfies $\sigma_{e_{1}} \sigma_{e_{2}} \ldots \sigma_{e_{p}}=i d$, then S - k-coloring $\Longleftrightarrow k$-list coloring.

Z Z. Dvořák, L. Postle. Correspondence coloring and its application to list-col oring planar graphs without cycles of lengths 4 to 8. JCTB, 129: 38-54, 2018.

Outline

(1) Introduction

- Coloring
- Signed coloring
(2) Critical permutation set
- Generalized signed coloring
- S is Critical
(3) Results
- $S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical
- $\Gamma_{1} \times \Gamma_{2} \ldots \times \Gamma_{q}$ is critical
(4) Summary
- Note that not every planar graph is 4 -list-colorable.
- Not every planar graph is $S_{4^{-}}$-colorable.
- For which $S \subsetneq S_{4}$, every planar graph is S-4-colorable?

	\mathcal{P}
\mathcal{H}	\mathcal{G}
S_{4}-4-colorable	
S-4-colorable	

L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2. Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

- Note that not every planar graph is 4 -list-colorable.
- Not every planar graph is S_{4}-4-colorable.

L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2. Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.
- Note that not every planar graph is 4 -list-colorable.
- Not every planar graph is S_{4}-4-colorable.
- For which $S \subsetneq S_{4}$, every planar graph is S-4-colorable?

	\mathcal{P}
\mathcal{H}	\mathcal{G}
S_{4}-4-colorable	
S-4-colorable	

侸 L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.俭 Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

- Note that not every planar graph is 4 -list-colorable.
- Not every planar graph is S_{4}-4-colorable.
- For which $S \subsetneq S_{4}$, every planar graph is S-4-colorable?

	\mathcal{P}
\mathcal{H}	\mathcal{G}
S_{4}-4-colorable	
S-4-colorable	

侸 L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.俭 Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

- Note that not every planar graph is 4 -list-colorable.
- Not every planar graph is S_{4}-4-colorable.
- For which $S \subsetneq S_{4}$, every planar graph is S-4-colorable?

$$
S=\{i d\}, \text { for } S \neq\{i d\} ?
$$

- For which $\{i d\} \subsetneq S \subsetneq S_{4}, \mathcal{H} \subsetneq \mathcal{G} \subsetneq \mathcal{P}$?
which is not $S^{\prime}-4$-colorable. $\{i d\} \subseteq S \subsetneq S_{4}$.
\square
Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq\{$ id, (12), (34), (12)(34)\}
L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.
- Note that not every planar graph is 4 -list-colorable.
- Not every planar graph is S_{4}-4-colorable.
- For which $S \subsetneq S_{4}$, every planar graph is S-4-colorable? $S=\{i d\}$, for $S \neq\{i d\} ?$

- For which $\{i d\} \subsetneq S \subsetneq S_{4}, \mathcal{H} \subsetneq \mathcal{G} \subsetneq \mathcal{P}$?
- Find S such that for $S \subsetneq S^{\prime}$, there exists an S-4-colorable planar graph G which is not S^{\prime}-4-colorable. $\{i d\} \subseteq S \subsetneq S_{4}$.

Theorem
Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq\{$ id, (12), (34), (12)(34) \}.
L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

- Note that not every planar graph is 4 -list-colorable.
- Not every planar graph is S_{4}-4-colorable.
- For which $S \subsetneq S_{4}$, every planar graph is S-4-colorable? $S=\{i d\}$, for $S \neq\{i d\}$?

- For which $\{i d\} \subsetneq S \subsetneq S_{4}, \mathcal{H} \subsetneq \mathcal{G} \subsetneq \mathcal{P}$?
- Find S such that for $S \subsetneq S^{\prime}$, there exists an S-4-colorable planar graph G which is not S^{\prime}-4-colorable. $\{i d\} \subseteq S \subsetneq S_{4}$.

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq\{i d,(12),(34),(12)(34)\}$.
L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

S is Critical

Now we consider a general k, and general graph.

- S is trivial: there exists $i_{0} \in[k]$ s. t. $\sigma\left(i_{0}\right) \neq i_{0}$ for any $\sigma \in S$.
- If $S \subset S_{k}$ is trivial, then every graph G is S - k-colorable.

Definition (Critical)
A non-trivial inverse closed subset S of S_{k} is called critical if for any inverse closed subset S^{\prime} with $S \subseteq S^{\prime}$, there is an S - k-colorable graph which is not $S^{\prime}-k$-colorable.

S is Critical

Now we consider a general k, and general graph.

- S is trivial: there exists $i_{0} \in[k]$ s. t. $\sigma\left(i_{0}\right) \neq i_{0}$ for any $\sigma \in S$.
- If $S \subset S_{k}$ is trivial, then every graph G is S - k-colorable.

Definition (Critical)
A non-trivial inverse closed subset S of S_{k} is called critical if for any inverse closed subset S^{\prime} with $S \subseteq S^{\prime}$, there is an S - k-colorable graph which is not $S^{\prime}-k$-colorable.

S is Critical

Now we consider a general k, and general graph.

- S is trivial: there exists $i_{0} \in[k]$ s. t. $\sigma\left(i_{0}\right) \neq i_{0}$ for any $\sigma \in S$.
- If $S \subset S_{k}$ is trivial, then every graph G is S - k-colorable.
- We want non-trivial, inverse closed S and S^{\prime} s.t. $\{i d\} \subseteq S \subsetneq S^{\prime} \subseteq S_{k}$.

Definition (Critical)
A non-trivial inverse closed subset S of S_{k} is called critical if for any inverse closed subset S^{\prime} with $S \subseteq S^{\prime}$, there is an S - k-colorable graph which is not $S^{\prime}-k$-colorable.

S is Critical

Now we consider a general k, and general graph.

- S is trivial: there exists $i_{0} \in[k]$ s. t. $\sigma\left(i_{0}\right) \neq i_{0}$ for any $\sigma \in S$.
- If $S \subset S_{k}$ is trivial, then every graph G is S - k-colorable.
- We want non-trivial, inverse closed S and S^{\prime} s.t. $\{i d\} \subseteq S \subsetneq S^{\prime} \subseteq S_{k}$.

Definition (Critical)

A non-trivial inverse closed subset S of S_{k} is called critical if for any inverse closed subset S^{\prime} with $S \subsetneq S^{\prime}$, there is an S - k-colorable graph which is not S^{\prime} - k-colorable.

S is Critical

- For $k=2, S=\{i d\}$ is critical. Even cycle $\notin \mathcal{H}$!

S is Critical

- For $k=2, S=\{i d\}$ is critical. Even cycle $\notin \mathcal{H}$!

S is Critical

- For $k=2, S=\{i d\}$ is critical. Even cycle $\notin \mathcal{H}$!

- For $k \geq 3$?

S is Critical

- For $k=2, S=\{i d\}$ is critical. Even cycle $\notin \mathcal{H}$!

- For $k \geq 3$?

S is Critical

- For $k=2, S=\{i d\}$ is critical. Even cycle $\notin \mathcal{H}$!

- For $k \geq 3$? Yes!

Lemma

An inverse closed subset S of S_{k} is critical if and only if there is an S-k-colorable graph G such that for any $\pi \in S_{k}-S$ with $S^{\prime}=S \cup\left\{\pi, \pi^{-1}\right\}, G$ is not S^{\prime} - k-colorable.

(1) Introduction

- Coloring
- Signed coloring
(2) Critical permutation set
- Generalized signed coloring
- S is Critical
(3) Results
- $S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical
- $\Gamma_{1} \times \Gamma_{2} \ldots \times \Gamma_{q}$ is critical

Hao Qi (ASIM)
$S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical

Theorem

Assume k, q are two positive integers such that $k_{1}+k_{2}+\ldots+k_{q}=k$. Then $S=S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical.

For $i \in[q], V\left(K_{k_{i}}\right)=\left\{v_{i, j}\right\}$, where $j=1,2, \ldots, k_{i}$
For $i \in[q], V\left(\bar{K}_{k_{q}}\right)=\left\{u_{i, j}\right\}$, where $j=1,2, \ldots, k_{i}$

$$
G[A]=K_{k}
$$

$$
G[B]=K_{k_{1}, k_{2}, \ldots, k_{q}}
$$

$$
E[A, B]=\bigcup_{i=1}^{q} \bigcup_{j=1}^{k_{i}} \bigcup_{i^{\prime}=1}^{q} \bigcup_{j^{\prime}=1}^{k_{i}} v_{i, j} u_{i^{\prime}, j^{\prime}}-\bigcup_{i=1}^{q} \bigcup_{j=1}^{k_{i}} v_{i, j} u_{i, j}
$$

$K_{k_{1}, k_{2}, \ldots, k_{q}}$ complete q-partite graph with partite size are $k_{1}, k_{2}, \ldots, k_{q}$.
$S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical

Theorem

Assume k, q are two positive integers such that $k_{1}+k_{2}+\ldots+k_{q}=k$. Then $S=S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical.

- For $k_{1}=k_{2}=\ldots=k_{q}=1$, then $q=k$ and $S=\{i d\}$ is critical.

For $i \in[q], V\left(K_{k_{i}}\right)=\left\{v_{i, j}\right\}$, where $j=1,2, \ldots, k_{i}$
For $i \in[q], V\left(\bar{K}_{k_{q}}\right)=\left\{u_{i, j}\right\}$, where $j=1,2, \ldots, k_{i}$

$$
G[A]=K_{k}
$$

$$
G[B]=K_{k_{1}, k_{2}, \ldots, k_{q}}
$$

$$
E[A, B]=\bigcup_{i=1}^{q} \bigcup_{j=1}^{k_{i}} \bigcup_{i^{\prime}=1}^{q} \bigcup_{j^{\prime}=1}^{k_{i}} v_{i, j} u_{i^{\prime}, j^{\prime}}-\bigcup_{i=1}^{q} \bigcup_{j=1}^{k_{i}} v_{i, j} u_{i, j}
$$

$K_{k_{1}, k_{2}, \ldots, k_{q}}$ complete q-partite graph with partite size are $k_{1}, k_{2}, \ldots, k_{q}$.
$S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical

Theorem

Assume k, q are two positive integers such that $k_{1}+k_{2}+\ldots+k_{q}=k$. Then $S=S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical.

For $i \in[q], V\left(K_{k_{i}}\right)=\left\{v_{i, j}\right\}$, where $j=1,2, \ldots, k_{i}$
For $i \in[q], V\left(\bar{K}_{k_{q}}\right)=\left\{u_{i, j}\right\}$, where $j=1,2, \ldots, k_{i}$

$$
G[A]=K_{k} \quad G[B]=K_{k_{1}, k_{2}, \ldots, k_{q}}
$$

$$
E[A, B]=\bigcup_{i=1}^{q} \bigcup_{j=1}^{k_{i}} \bigcup_{i^{\prime}=1}^{q} \bigcup_{j^{\prime}=1}^{k_{i}} v_{i, j} u_{i^{\prime}, j^{\prime}}-\bigcup_{i=1}^{q} \bigcup_{j=1}^{k_{i}} v_{i, j} u_{i, j}
$$

$K_{k_{1}, k_{2}, \ldots, k_{q}}$ complete q-partite graph with partite size are $k_{1}, k_{2}, \ldots, k_{q}$.
$S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical

Theorem

Assume k, q are two positive integers such that $k_{1}+k_{2}+\ldots+k_{q}=k$. Then $S=S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical.

- For any signature $\sigma,(G, \sigma)$ is S - k-colorable.

$$
\begin{gathered}
\text { For } i \in[q], V\left(K_{k_{i}}\right)=\left\{v_{i, j}\right\} \text {, where } j=1,2, \ldots, k_{i} \\
\text { For } i \in[q], V\left(\bar{K}_{k_{q}}\right)=\left\{u_{i, j}\right\} \text {, where } j=1,2, \ldots, k_{i} \\
G[A]=K_{k} \quad G[B]=K_{k_{1}, k_{2}, \ldots, k_{q}} \\
E[A, B]=\bigcup_{i=1}^{q} \cup_{j=1}^{k_{i}} \bigcup_{i^{\prime}=1}^{q} \bigcup_{j^{\prime}=1}^{k_{i}} v_{i, j} u_{i^{\prime}, j^{\prime}}-\bigcup_{i=1}^{q} \cup_{j=1}^{k_{i}} v_{i, j} u_{i, j}
\end{gathered}
$$

$K_{k_{1}, k_{2}, \ldots, k_{q}}$ complete q-partite graph with partite size are $k_{1}, k_{2}, \ldots, k_{q}$.
$S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical

Theorem

Assume k, q are two positive integers such that $k_{1}+k_{2}+\ldots+k_{q}=k$. Then $S=S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical.

- For any signature $\sigma,(G, \sigma)$ is S - k-colorable.
- $S^{\prime}=S \cup\left\{\pi, \pi^{-1}\right\}$, there exists a signature σ s.t. (G, σ) is $S^{\prime}-k$-colorable.

$$
\begin{gathered}
\text { For } i \in[q], V\left(K_{k_{i}}\right)=\left\{v_{i, j}\right\} \text {, where } j=1,2, \ldots, k_{i} \\
\text { For } i \in[q], V\left(\bar{K}_{k_{q}}\right)=\left\{u_{i, j}\right\} \text {, where } j=1,2, \ldots, k_{i} \\
G[A]=K_{k} \quad G[B]=K_{k_{1}, k_{2}, \ldots, k_{q}} \\
E[A, B]=\bigcup_{i=1}^{q} \cup_{j=1}^{k_{i}} \bigcup_{i^{\prime}=1}^{q} \bigcup_{j^{\prime}=1}^{k_{i}} v_{i, j} u_{i^{\prime}, j^{\prime}}-\bigcup_{i=1}^{q} \cup_{j=1}^{k_{i}} v_{i, j} u_{i, j}
\end{gathered}
$$

$K_{k_{1}, k_{2}, \ldots, k_{q}}$ complete q-partite graph with partite size are $k_{1}, k_{2}, \ldots, k_{q}$.

Outline

(1) Introduction

- Coloring
- Signed coloring
(2) Critical permutation set
- Generalized signed coloring
- S is Critical
(3) Results
- $S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{q}}$ is critical
- $\Gamma_{1} \times \Gamma_{2} \ldots \times \Gamma_{q}$ is critical

4 Summary

Theorem

Assume $[k]=X_{1} \cup X_{2} \cup \ldots \cup X_{q}$ and $\left|X_{i}\right|=k_{i}$. If $S=\Gamma_{1} \times \Gamma_{2} \times \ldots \times \Gamma_{q}$, where for each i either $\Gamma_{i}=S_{X_{i}}$ or $\left|X_{i}\right|=3$ and Γ_{i} is the subgroup of $S_{X_{i}}$ generated by a cyclic permutation of X_{i}, then S is critical.

Remark: If $\left|X_{i}\right|=3$, i.e. $X_{i}=\left\{a_{1}, a_{2}, a_{3}\right\}$, then $\Gamma_{i}=\left\langle\left(a_{1} a_{2} a_{3}\right)\right\rangle$.
For a set X, S_{X} : the symmtric group of all permutations on X.

Summary

Conjecture

For a positive k, every non-trivial $S \subseteq S_{k}$ is critical.

- $k=2$, the conjecture is true.
- $k=3$?
- $k=4$?

Theorem
U_{n} to coniugation, if every planar graph is S-4-colorable, then $S \subseteq\{$ id., (12), (34), (12)(34)\}

Summary

Conjecture

For a positive k, every non-trivial $S \subseteq S_{k}$ is critical.

- $k=2$, the conjecture is true.

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq\{i d,(12),(34),(12)(34)\}$

Summary

Conjecture

For a positive k, every non-trivial $S \subseteq S_{k}$ is critical.

- $k=2$, the conjecture is true.
- $k=3$?

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq\{$ id, (12), (34), (12)(34) \}.

Summary

Conjecture

For a positive k, every non-trivial $S \subseteq S_{k}$ is critical.

- $k=2$, the conjecture is true.
- $k=3$?
- $k=4$?

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq\{i d,(12),(34),(12)(34)\}$

Summary

Conjecture

For a positive k, every non-trivial $S \subseteq S_{k}$ is critical.

- $k=2$, the conjecture is true.
- $k=3$?
- $k=4$?

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq\{i d,(12),(34),(12)(34)\}$.

Summary

Conjecture

For a positive k, every non-trivial $S \subseteq S_{k}$ is critical.

- $k=2$, the conjecture is true.
- $k=3$?
- $k=4$?

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq\{i d,(12),(34),(12)(34)\}$.

- If $S \subseteq\{i d,(12),(34),(12)(34)\}$, then every plnanr graph is S-4-colorable?

Thank you for your attention!

