Critical permutation set 00000000 Results 00000

Critical permutation sets for generalized of signed graph coloring

Hao Qi¹ Tsai-Lien Wong² Xuding Zhu³

¹Academia Sinica ²National Sun Yat-sen University ³Zhejiang Normal University

August. 20 / Academia Sinica

Critical permutation set 00000000 Results

Summary

Outline

Introduction

- Coloring
- Signed coloring

2 Critical permutation set

- Generalized signed coloring
- S is Critical

3 Results

• $S_{k_1} \times S_{k_2} \times \ldots \times S_{k_q}$ is critical • $\Gamma_1 \times \Gamma_2 \ldots \times \Gamma_q$ is critical

4 Summary

 Critical permutation set 00000000 Results

Summary

Introduction Coloring

Signed coloring

Critical permutation set

- Generalized signed coloring
- S is Critical

3 Results

• $S_{k_1} \times S_{k_2} \times \ldots \times S_{k_q}$ is critical • $\Gamma_1 \times \Gamma_2 \ldots \times \Gamma_q$ is critical

4 Summary

coloring

Critical permutation set

Results 00000 Summary

A *k*-coloring of a graph G is a mapping $\varphi: V(G) \to [k]$ such that $\varphi(u) \neq \varphi(v)$ for any edge $e = uv \in E(G)$.

Critical permutation set 00000000 Results 00000 Summary

A *k*-coloring of a graph G is a mapping $\varphi : V(G) \to [k]$ such that $\varphi(u) \neq \varphi(v)$ for any edge $e = uv \in E(G)$.

A *k*-list coloring of G is a *k*-coloring φ such that $\varphi(v) \in L(v)$ for any $v \in V(G)$, where L is a mapping $L: V(G) \to \mathbb{N}$ and |L(v)| = k.

Introduction Outline Critical permutation set 00000000 Results 00000 Summary

Introduction

Signed coloring

Critical permutation set

- Generalized signed coloring
- S is Critical

3 Results

• $S_{k_1} \times S_{k_2} \times \ldots \times S_{k_q}$ is critical • $\Gamma_1 \times \Gamma_2 \ldots \times \Gamma_q$ is critical

4 Summary

Introduction
0000000000

Signed graph

Critical permutation set

Results 00000 Summary

A signed graph is a pair (G, σ) , where G is a graph and $\sigma : E(G) \to \{1, -1\}$ is a mapping which assigns to each edge e a sign σ_e .

Introduction
0000000000

Results 00000

MRS-Z-k-coloring

For an integer k, let
$$N_k = \begin{cases} \{0, \pm 1, \pm 2, \dots, \pm r\}, & \text{if } k = 2r + 1, \\ \{\pm 1, \pm 2, \dots, \pm r\}, & \text{if } k = 2r. \end{cases}$$

A *MRS-Z-k-coloring* of a signed graph (G, σ) is a mapping $\varphi : V(G) \to N_k$ such that $\varphi(u) \neq \sigma_e(\varphi(v))$ for any $uv = e \in E(G)$.

★ T. Zaslavsky. Signed graph coloring. Discrete Math., 39(2): 215-228, 1982.

E. Máčajová, A. Raspaud, M. Škoviera. The chromatic number of a signed graph. *Electron. J. Combin.* 23 (1) (2016) #P1.14.

Introduction	Critical permutation set	Results
000000000	0000000	00000
MRS-Z-k-coloring		
$v_1 \bigoplus_{1}^{v_1} +$	+ v ₂	$v_1 $ v_2 v_2

 $v_3 (\bullet$

+

••

 v_4

-1

 $v_3 (\bullet)$

Summary

 v_4

•

Introduction
00000000000

Results 00000 Summary

KS-*k*-coloring

A *KS-k-coloring* of (G, σ) is a mapping $\varphi : V \to \mathbb{Z}_k$ such that $\varphi(u) \neq \sigma_e(\varphi(v))$ for any $uv = e \in E(G)$.

✓ Y. Kang and E. Steffen. The chromatic spectrum of signed graphs. *Discrete Math.*, 339: 2660–2663, 2016.

 ✤ Y. Kang and E. Steffen. Circular coloring of signed graphs. J. Graph Theory, 87(2): 135–148, 2018.

Critical permutation set 00000000 Results

MRS-Z-k-coloring V.S. KS-k-coloring

MRS-Z-4-coloring

KS-4-coloring

Critical permutation sets for generalized of signed graph coloring

Critical permutation set 00000000

Results 00000 Summary

Application in Four color Theorem

Máčajová, Raspaud and Škoviera (2016) conjectures that every signed planar graph MRS-Z-4-colorable. Recently, František Kardoš and Jonathan Narboni disprove the conjecture.

Every signed planar graph is KS-4-colorable?

A complex 4-coloring of a signed graph (G, σ) is a mapping $\varphi : V(G) \to \{1, -1, i, -i\}$ such that $\varphi(u)\varphi(v) \neq \sigma(e)$ for any $uv = e \in E(G)$.

Every signed planar graph is complex 4-colorable?

✤ F. Kardoš, J. Narboni, On the 4-color theorem for signed graphs, arXiv:1906.09638v1.
 ✿ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
 ✿ Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint, 2019+

Critical permutation set 00000000 Results 00000 Summary

Application in Four color Theorem

Máčajová, Raspaud and Škoviera (2016) conjectures that every signed planar graph MRS-Z-4-colorable. Recently, František Kardoš and Jonathan Narboni disprove the conjecture.

Every signed planar graph is KS-4-colorable?

A complex 4-coloring of a signed graph (G, σ) is a mapping $\varphi: V(G) \to \{1, -1, i, -i\}$ such that $\varphi(u)\varphi(v) \neq \sigma(e)$ for any $uv = e \in E(G)$.

Every signed planar graph is complex 4-colorable?

✤ F. Kardoš, J. Narboni, On the 4-color theorem for signed graphs, arXiv:1906.09638v1.

✤ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.

 Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint, 2019+ Hao Qi (ASIM)
 Critical permutation sets for generalized of signed graph coloring
 Outline

Critical permutation set •0000000 Results 00000 Summary

- Coloring
- Signed coloring

2 Critical permutation set

- Generalized signed coloring
 Grid Critical
- S is Critical

3 Results

• $S_{k_1} \times S_{k_2} \times \ldots \times S_{k_q}$ is critical • $\Gamma_1 \times \Gamma_2 \ldots \times \Gamma_q$ is critical

4 Summary

Results 00000

Generalized signed graph

What about graph with more than 2-types of edge?

- S_k is a symmetric group of order k and $S \subseteq S_k$.
- D(G) is a directed graph of G.
- $\sigma: E(D(G)) \to S$ is a mapping which assigns to any \overrightarrow{e} a sign $\sigma_{\overrightarrow{e}}$.

To convenient, we define $\sigma_{\overrightarrow{e}} \cdot \sigma_{\overleftarrow{e}} = id$, and we view G as a symmetric digraph.

Definition (Generalized signed graph)

Assume S is a inverse closed subset of S_k . An S-signature of G is a mapping $\sigma: E(G) \to S$ such that $\sigma_{\overrightarrow{e}} \cdot \sigma_{\overleftarrow{e}} = id$. The pair (G, σ) is called an S-signed graph

Critical permutation set 0000000 Results 00000 Summary

Generalized signed graph

What about graph with more than 2-types of edge?

- S_k is a symmetric group of order k and $S \subseteq S_k$.
- D(G) is a directed graph of G.
- $\sigma: E(D(G)) \to S$ is a mapping which assigns to any \overrightarrow{e} a sign $\sigma_{\overrightarrow{e}}$.

To convenient, we define $\sigma_{\overrightarrow{e}} \cdot \sigma_{\overleftarrow{e}} = id$, and we view G as a symmetric digraph.

Definition (Generalized signed graph)

Assume S is a inverse closed subset of S_k . An S-signature of G is a mapping $\sigma: E(G) \to S$ such that $\sigma_{\overrightarrow{e}} \cdot \sigma_{\overleftarrow{e}} = id$. The pair (G, σ) is called an S-signed graph

Critical permutation set 0000000 Results 00000 Summary

Generalized signed graph

What about graph with more than 2-types of edge?

- S_k is a symmetric group of order k and $S \subseteq S_k$.
- D(G) is a directed graph of G.
- $\sigma: E(D(G)) \to S$ is a mapping which assigns to any \overrightarrow{e} a sign $\sigma_{\overrightarrow{e}}$.

To convenient, we define $\sigma_{\overrightarrow{e}} \cdot \sigma_{\overleftarrow{e}} = id$, and we view G as a symmetric digraph.

Definition (Generalized signed graph)

Assume S is a inverse closed subset of S_k . An S-signature of G is a mapping $\sigma: E(G) \to S$ such that $\sigma_{\overrightarrow{e}} \cdot \sigma_{\overleftarrow{e}} = id$. The pair (G, σ) is called an S-signed graph

Critical permutation set 0000000 Results 00000 Summary

Generalized signed graph

What about graph with more than 2-types of edge?

- S_k is a symmetric group of order k and $S \subseteq S_k$.
- D(G) is a directed graph of G.
- $\sigma: E(D(G)) \to S$ is a mapping which assigns to any \overrightarrow{e} a sign $\sigma_{\overrightarrow{e}}$.

To convenient, we define $\sigma_{\overrightarrow{e}} \cdot \sigma_{\overleftarrow{e}} = id$, and we view G as a symmetric digraph.

Definition (Generalized signed graph)

Assume S is a inverse closed subset of S_k . An S-signature of G is a mapping $\sigma: E(G) \to S$ such that $\sigma_{\overrightarrow{e}} \cdot \sigma_{\overleftarrow{e}} = id$. The pair (G, σ) is called an S-signed graph.

Introduction
000000000

Results 00000

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph (G, σ) , S-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \to [k]$ such that $\varphi(u) \neq \sigma_e(\varphi(v))$ for any $uv = e \in E(G)$.

G is S-k-colorable if for any S-signature $\sigma,~(G,\sigma)$ has an S-k-coloring.

- $S = \{id\}$, S-k-coloring $\iff k$ -coloring.
- $S = \{id, (12)(34) \dots (2r-1 \ 2r)\},\$
 - $r = \lfloor k/2 \rfloor$, S-k-coloring $\iff \mathsf{MRS-Z-}k$ -coloring;
 - $r = \lceil k/2 \rceil 1$, S-k-coloring $\iff \mathsf{KS}$ -k-coloring.
 - $S = \{id, (12)(34)\}, S$ -4-coloring $\iff MRS$ -Z-4-coloring;
 - $S = \{id, (12)\}, S-4$ -coloring \iff KS-4-coloring;
 - $S = \{(12), (34)\}, S-4$ -coloring \iff complex-4-coloring.
- $S = \mathbb{Z}_k$, S-k-coloring \iff group coloring.
- $S = S_k$, S-k-coloring \iff DP-k-coloring.

✤ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.

🛠 Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Introduction
000000000

Results 00000

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph (G, σ) , S-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \to [k]$ such that $\varphi(u) \neq \sigma_e(\varphi(v))$ for any $uv = e \in E(G)$.

G is S-k-colorable if for any S-signature $\sigma,~(G,\sigma)$ has an S-k-coloring.

- $S = \{id\}, S-k$ -coloring $\iff k$ -coloring.
- $S = \{id, (12)(34) \dots (2r-1 \ 2r)\},\$
 - $r = \lfloor k/2 \rfloor$, S-k-coloring \iff MRS-Z-k-coloring;
 - $r = \lceil k/2 \rceil 1$, S-k-coloring $\iff \mathsf{KS}$ -k-coloring.
 - $S = \{id, (12)(34)\}, S$ -4-coloring \iff MRS-Z-4-coloring
 - $S = \{id, (12)\}, S-4$ -coloring \iff KS-4-coloring;
 - $S = \{(12), (34)\}, S-4$ -coloring \iff complex-4-coloring.
- S = Z_k, S-k-coloring ⇔ group coloring.
 S = S_k, S-k-coloring ⇔ DP-k-coloring.
- 🗜 L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
- 🛠 Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Critical permutation set

Results 00000 Summary

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph (G, σ) , S-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \to [k]$ such that $\varphi(u) \neq \sigma_e(\varphi(v))$ for any $uv = e \in E(G)$.

G is S-k-colorable if for any $S\text{-signature }\sigma\text{, }(G,\sigma)$ has an S-k-coloring.

•
$$S = \{id\}$$
, S-k-coloring \iff k-coloring.

•
$$S = \{id, (12)(34) \dots (2r-1 \ 2r)\},\$$

$$r = \lfloor k/2 \rfloor$$
, S-k-coloring \iff MRS-Z-k-coloring

$$r = \lceil k/2 \rceil - 1$$
, S-k-coloring $\iff \mathsf{KS}$ -k-coloring.

•
$$S = \{id, (12)(34)\}, S-4$$
-coloring $\iff MRS-Z-4$ -coloring;

$$S = \{id, (12)\}, S-4$$
-coloring $\iff \mathsf{KS}$ -4-coloring;

$$S = \{(12), (34)\}, S-4$$
-coloring \iff complex-4-coloring.

•
$$S = \mathbb{Z}_k$$
, S-k-coloring \iff group coloring.

• $S = S_k$, S-k-coloring \iff DP-k-coloring.

★ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.

🛧 Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Critical permutation set

Results 00000 Summary

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph (G, σ) , S-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \to [k]$ such that $\varphi(u) \neq \sigma_e(\varphi(v))$ for any $uv = e \in E(G)$.

 $\begin{array}{l} G \text{ is } S\text{-}k\text{-}colorable \text{ if for any } S\text{-}signature } \sigma, \ (G,\sigma) \text{ has an } S\text{-}k\text{-}coloring. \\ \bullet \ S = \{id\}, \ S\text{-}k\text{-}coloring \Longleftrightarrow k\text{-}coloring. \\ \bullet \ S = \{id, (12)(34) \dots (2r\text{-}1\ 2r)\}, \\ r = \lfloor k/2 \rfloor, \ S\text{-}k\text{-}coloring \Longleftrightarrow \mathsf{MRS}\text{-}Z\text{-}k\text{-}coloring; \\ r = \lceil k/2 \rceil - 1, \ S\text{-}k\text{-}coloring \Longleftrightarrow \mathsf{KS}\text{-}k\text{-}coloring. \\ \bullet \ S = \{id, (12)(34)\}, \ S\text{-}4\text{-}coloring \Longleftrightarrow \mathsf{MRS}\text{-}Z\text{-}4\text{-}coloring; \\ \bullet \ S = \{id, (12)\}, \ S\text{-}4\text{-}coloring \Longleftrightarrow \mathsf{KS}\text{-}4\text{-}coloring; \\ \bullet \ S = \{(12), (34)\}, \ S\text{-}4\text{-}coloring \Longleftrightarrow \mathsf{complex}\text{-}4\text{-}coloring. \\ \bullet \ S = \mathbb{Z}_k, \ S\text{-}k\text{-}coloring \Longleftrightarrow \mathsf{group \ coloring}. \end{array}$

• $S = S_k$, S-k-coloring \iff DP-k-coloring.

✤ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.

🛠 Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Critical permutation set

Results 00000 Summary

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph (G, σ) , S-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \to [k]$ such that $\varphi(u) \neq \sigma_e(\varphi(v))$ for any $uv = e \in E(G)$.

$$\begin{array}{l} G \text{ is } S\text{-}k\text{-}colorable \text{ if for any } S\text{-}signature } \sigma, \ (G,\sigma) \text{ has an } S\text{-}k\text{-}coloring. \\ \bullet \ S = \{id\}, \ S\text{-}k\text{-}coloring \Longleftrightarrow k\text{-}coloring. \\ \bullet \ S = \{id, (12)(34) \dots (2r\text{-}1\ 2r)\}, \\ r = \lfloor k/2 \rfloor, \ S\text{-}k\text{-}coloring \Longleftrightarrow \mathsf{MRS}\text{-}Z\text{-}k\text{-}coloring; \\ r = \lceil k/2 \rceil - 1, \ S\text{-}k\text{-}coloring \Longleftrightarrow \mathsf{KS}\text{-}k\text{-}coloring. \\ \bullet \ S = \{id, (12)(34)\}, \ S\text{-}4\text{-}coloring \Longleftrightarrow \mathsf{MRS}\text{-}Z\text{-}4\text{-}coloring; \\ \bullet \ S = \{id, (12)\}, \ S\text{-}4\text{-}coloring \Longleftrightarrow \mathsf{KS}\text{-}4\text{-}coloring; \\ \bullet \ S = \{(12), (34)\}, \ S\text{-}4\text{-}coloring \iff \mathsf{complex}\text{-}4\text{-}coloring. \\ \bullet \ S = \mathbb{Z}_k, \ S\text{-}k\text{-}coloring \iff \mathsf{group \ coloring}. \end{array}$$

• $S = S_k$, S-k-coloring \iff DP-k-coloring.

✤ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.

🛠 Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Critical permutation set

Results 00000 Summary

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph (G, σ) , S-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \to [k]$ such that $\varphi(u) \neq \sigma_e(\varphi(v))$ for any $uv = e \in E(G)$.

$$\begin{array}{l} G \text{ is } S\text{-}k\text{-}colorable \text{ if for any } S\text{-}signature } \sigma, \ (G,\sigma) \text{ has an } S\text{-}k\text{-}coloring. \\ \bullet \ S = \{id\}, \ S\text{-}k\text{-}coloring \Longleftrightarrow k\text{-}coloring. \\ \bullet \ S = \{id, (12)(34) \dots (2r\text{-}1\ 2r)\}, \\ r = \lfloor k/2 \rfloor, \ S\text{-}k\text{-}coloring \Longleftrightarrow \mathsf{MRS}\text{-}Z\text{-}k\text{-}coloring; \\ r = \lceil k/2 \rceil - 1, \ S\text{-}k\text{-}coloring \Longleftrightarrow \mathsf{KS}\text{-}k\text{-}coloring. \\ \bullet \ S = \{id, (12)(34)\}, \ S\text{-}4\text{-}coloring \Longleftrightarrow \mathsf{MRS}\text{-}Z\text{-}4\text{-}coloring; \\ \bullet \ S = \{id, (12)\}, \ S\text{-}4\text{-}coloring \Longleftrightarrow \mathsf{KS}\text{-}4\text{-}coloring; \\ \bullet \ S = \{(12), (34)\}, \ S\text{-}4\text{-}coloring \Longleftrightarrow \mathsf{complex}\text{-}4\text{-}coloring. \\ \bullet \ S = \mathbb{Z}_k, \ S\text{-}k\text{-}coloring \Longleftrightarrow \mathsf{group \ coloring}. \end{array}$$

• $S = S_k$, S-k-coloring \iff DP-k-coloring.

✤ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.

🛠 Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Critical permutation set

Results 00000 Summary

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph (G, σ) , S-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \to [k]$ such that $\varphi(u) \neq \sigma_e(\varphi(v))$ for any $uv = e \in E(G)$.

$$\begin{array}{l} G \text{ is } S\text{-}k\text{-}colorable \text{ if for any } S\text{-}signature } \sigma, \ (G,\sigma) \text{ has an } S\text{-}k\text{-}coloring. \\ \bullet \ S = \{id\}, \ S\text{-}k\text{-}coloring \Longleftrightarrow k\text{-}coloring. \\ \bullet \ S = \{id, (12)(34) \dots (2r\text{-}1\ 2r)\}, \\ r = \lfloor k/2 \rfloor, \ S\text{-}k\text{-}coloring \Longleftrightarrow \mathsf{MRS}\text{-}Z\text{-}k\text{-}coloring; \\ r = \lceil k/2 \rceil - 1, \ S\text{-}k\text{-}coloring \Longleftrightarrow \mathsf{KS}\text{-}k\text{-}coloring. \\ \bullet \ S = \{id, (12)(34)\}, \ S\text{-}4\text{-}coloring \Longleftrightarrow \mathsf{MRS}\text{-}Z\text{-}4\text{-}coloring; \\ \bullet \ S = \{id, (12)\}, \ S\text{-}4\text{-}coloring \Longleftrightarrow \mathsf{KS}\text{-}4\text{-}coloring; \\ \bullet \ S = \{id, (12)\}, \ S\text{-}4\text{-}coloring \Longleftrightarrow \mathsf{complex}\text{-}4\text{-}coloring. \\ \bullet \ S = \{(12), (34)\}, \ S\text{-}4\text{-}coloring \Longleftrightarrow \mathsf{complex}\text{-}4\text{-}coloring. \\ \bullet \ S = \mathbb{Z}_k, \ S\text{-}k\text{-}coloring \Longleftrightarrow \mathsf{group coloring}. \end{array}$$

• $S = S_k$, S-k-coloring \iff DP-k-coloring.

✤ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.

🛠 Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Critical permutation set

Results 00000 Summary

Generalized signed coloring

Definition (Generalized signed coloring)

For an S-signed graph (G, σ) , S-k-coloring of (G, σ) is a mapping: $\varphi: V(G) \to [k]$ such that $\varphi(u) \neq \sigma_e(\varphi(v))$ for any $uv = e \in E(G)$.

$$\begin{array}{l} G \text{ is } S\text{-}k\text{-colorable} \text{ if for any } S\text{-signature } \sigma, \ (G,\sigma) \text{ has an } S\text{-}k\text{-coloring.} \\ \bullet \ S = \{id\}, \ S\text{-}k\text{-coloring} \Longleftrightarrow k\text{-coloring.} \\ \bullet \ S = \{id, (12)(34) \dots (2r\text{-}1\ 2r)\}, \\ r = \lfloor k/2 \rfloor, \ S\text{-}k\text{-coloring} \Longleftrightarrow \mathsf{MRS-Z-}k\text{-coloring;} \\ r = \lceil k/2 \rceil - 1, \ S\text{-}k\text{-coloring} \Longleftrightarrow \mathsf{KS-}k\text{-coloring.} \\ \bullet \ S = \{id, (12)(34)\}, \ S\text{-}4\text{-coloring} \Longleftrightarrow \mathsf{MRS-Z-}4\text{-coloring;} \\ \bullet \ S = \{id, (12)\}, \ S\text{-}4\text{-coloring} \Longleftrightarrow \mathsf{KS-}4\text{-coloring;} \\ \bullet \ S = \{id, (12)\}, \ S\text{-}4\text{-coloring} \Leftrightarrow \mathsf{KS-}4\text{-coloring;} \\ \bullet \ S = \{id, (12)\}, \ S\text{-}4\text{-coloring} \Leftrightarrow \mathsf{complex-}4\text{-coloring.} \\ \bullet \ S = \mathbb{Z}_k, \ S\text{-}k\text{-coloring} \Leftrightarrow \mathsf{group \ coloring.} \\ \bullet \ S = S_k, \ S\text{-}k\text{-coloring} \Leftrightarrow \mathsf{DP-}k\text{-coloring.} \\ \bullet \ S = S_k, \ S\text{-}k\text{-coloring} \Leftrightarrow \mathsf{DP-}k\text{-coloring.} \\ \end{array}$$

🛧 Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Critical permutation set

Results 00000 Summary

DP-*k*-coloring

• $S = S_k$, S-k-coloring \iff DP-k-coloring.

Vertex $v \in V(G)$ is associated with a set of k-colors $\{(v, 1), (v, 2), \ldots, (v, k)\}$, uv = e is associated with a matching M_e between $\{(u, 1), (u, 2), \ldots, (u, k)\}$ and $\{(v, 1), (v, 2), \ldots, (v, k)\}$, restrict colors of u and v for coloring. E.g. k = 5:

M_e is consistent and a perfect matching, DP-k-coloring ⇔ k-list coloring
 If for any cycle C = (e₁e₂...e_p) of (G, σ) satisfies σ_{e1}σ_{e2}...σ_{ep} = id, then S-k-coloring ⇔ k-list coloring.

✤ Z. Dvořák, L. Postle. Correspondence coloring and its application to list-col oring planar graphs without cycles of lengths 4 to 8. JCTB, 129: 38-54, 2018.

Hao Qi (ASIM) Critical permutation sets for generalized of signed graph coloring

Critical permutation set

Results 00000 Summary

DP-*k*-coloring

• $S = S_k$, S-k-coloring \iff DP-k-coloring.

Vertex $v \in V(G)$ is associated with a set of k-colors $\{(v, 1), (v, 2), \ldots, (v, k)\}$, uv = e is associated with a matching M_e between $\{(u, 1), (u, 2), \ldots, (u, k)\}$ and $\{(v, 1), (v, 2), \ldots, (v, k)\}$, restrict colors of u and v for coloring. E.g. k = 5:

M_e is consistent and a perfect matching, DP-k-coloring ⇔ k-list coloring
 If for any cycle C = (e₁e₂...e_p) of (G, σ) satisfies σ_{e1}σ_{e2}...σ_{ep} = id, then S-k-coloring ⇔ k-list coloring.

✤ Z. Dvořák, L. Postle. Correspondence coloring and its application to list-col oring planar graphs without cycles of lengths 4 to 8. JCTB, 129: 38-54, 2018.

Hao Qi (ASIM) Critical permutation sets for generalized of signed graph coloring

Critical permutation set

Results 00000 Summary

DP-*k*-coloring

• $S = S_k$, S-k-coloring \iff DP-k-coloring.

Vertex $v \in V(G)$ is associated with a set of k-colors $\{(v, 1), (v, 2), \ldots, (v, k)\}$, uv = e is associated with a matching M_e between $\{(u, 1), (u, 2), \ldots, (u, k)\}$ and $\{(v, 1), (v, 2), \ldots, (v, k)\}$, restrict colors of u and v for coloring. E.g. k = 5:

• M_e is consistent and a perfect matching, DP-k-coloring \iff k-list coloring

• If for any cycle $C = (e_1 e_2 \dots e_p)$ of (G, σ) satisfies $\sigma_{e_1} \sigma_{e_2} \dots \sigma_{e_p} = id$, then S-k-coloring \iff k-list coloring.

 \mathbf{F} Z. Dvořák, L. Postle. Correspondence coloring and its application to list-col oring planar graphs without cycles of lengths 4 to 8. *JCTB*, 129: 38-54, 2018.

Hao Qi (ASIM)

Critical permutation set

Results 00000 Summary

Outline

Introduction

- Coloring
- Signed coloring

2 Critical permutation set

- Generalized signed coloring
- $\bullet \ S \text{ is Critical}$

3 Results

- $S_{k_1} \times S_{k_2} \times \ldots \times S_{k_q}$ is critical
- $\Gamma_1 \times \Gamma_2 \ldots \times \Gamma_q$ is critical

4 Summary

Introduction	
0000000000	

Results 00000

• Note that not every planar graph is 4-list-colorable.

- Not every planar graph is S_4 -4-colorable.
- For which S ⊊ S₄, every planar graph is S-4-colorable?
 S = {id}, for S ≠ {id}?

- For which $\{id\} \subsetneq S \subsetneq S_4$, $\mathcal{H} \subsetneq \mathcal{G} \subsetneq \mathcal{P}^*$
- Find S such that for S ⊆ S', there exists an S-4-colorable planar graph G which is not S'-4-colorable. {id} ⊆ S ⊆ S₄.

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq \{id, (12), (34), (12)(34)\}$.

✿ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
 ④ Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Introduction
0000000000

Results

- Note that not every planar graph is 4-list-colorable.
- Not every planar graph is S_4 -4-colorable.
- For which S ⊊ S₄, every planar graph is S-4-colorable?
 S = {id}, for S ≠ {id}?

- For which $\{id\} \subsetneq S \subsetneq S_4$, $\mathcal{H} \subsetneq \mathcal{G} \subsetneq \mathcal{P}^*$
- Find S such that for S ⊆ S', there exists an S-4-colorable planar graph G which is not S'-4-colorable. {id} ⊆ S ⊆ S₄.

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq \{id, (12), (34), (12)(34)\}$

✿ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
 ④ Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Introduction
0000000000

Results

- Note that not every planar graph is 4-list-colorable.
- Not every planar graph is S_4 -4-colorable.
- For which $S \subsetneq S_4$, every planar graph is S-4-colorable?

- For which $\{id\} \subsetneq S \subsetneq S_4$, $\mathcal{H} \subsetneq \mathcal{G} \subsetneq \mathcal{P}^*$
- Find S such that for S ⊆ S', there exists an S-4-colorable planar graph G which is not S'-4-colorable. {id} ⊆ S ⊆ S₄.

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq \{id, (12), (34), (12)(34)\}$.

✿ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
 ✿ Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Introduction
0000000000

Results

- Note that not every planar graph is 4-list-colorable.
- Not every planar graph is S_4 -4-colorable.
- For which $S \subsetneq S_4$, every planar graph is S-4-colorable?

- For which $\{id\} \subsetneq S \subsetneq S_4$, $\mathcal{H} \subsetneq \mathcal{G} \subsetneq \mathcal{P}^*$
- Find S such that for S ⊆ S', there exists an S-4-colorable planar graph G which is not S'-4-colorable. {id} ⊆ S ⊆ S₄.

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq \{id, (12), (34), (12)(34)\}$.

✿ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
 ✿ Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Results 00000

- Note that not every planar graph is 4-list-colorable.
- Not every planar graph is S_4 -4-colorable.
- For which $S \subsetneq S_4$, every planar graph is S-4-colorable? $S = \{id\}$, for $S \neq \{id\}$?

- For which $\{id\} \subsetneq S \subsetneq S_4$, $\mathcal{H} \subsetneq \mathcal{G} \subsetneq \mathcal{P}$?
- Find S such that for S ⊊ S', there exists an S-4-colorable planar graph G which is not S'-4-colorable. {id} ⊆ S ⊊ S₄.

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq \{id, (12), (34), (12)(34)\}$.

☆ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.
 ☆ Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Hao Qi (ASIM)

Critical permutation sets for generalized of signed graph coloring

Results 00000

- Note that not every planar graph is 4-list-colorable.
- Not every planar graph is S_4 -4-colorable.
- For which $S \subsetneq S_4$, every planar graph is S-4-colorable? $S = \{id\}$, for $S \neq \{id\}$?

- For which $\{id\} \subsetneq S \subsetneq S_4$, $\mathcal{H} \subsetneq \mathcal{G} \subsetneq \mathcal{P}$?
- Find S such that for S ⊊ S', there exists an S-4-colorable planar graph G which is not S'-4-colorable. {id} ⊆ S ⊊ S₄.

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq \{id, (12), (34), (12)(34)\}$.

₭ L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.

★ Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Hao Qi (ASIM)

Critical permutation sets for generalized of signed graph coloring

Results 00000

- Note that not every planar graph is 4-list-colorable.
- Not every planar graph is S_4 -4-colorable.
- For which $S \subsetneq S_4$, every planar graph is S-4-colorable? $S = \{id\}$, for $S \neq \{id\}$?

- For which $\{id\} \subsetneq S \subsetneq S_4$, $\mathcal{H} \subsetneq \mathcal{G} \subsetneq \mathcal{P}$?
- Find S such that for S ⊊ S', there exists an S-4-colorable planar graph G which is not S'-4-colorable. {id} ⊆ S ⊊ S₄.

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq \{id, (12), (34), (12)(34)\}$.

🛧 L. Jin, T. Wong, X. Zhu, Colouring of generalized signed planar graphs, arXiv:1811.08584v2.

★ Y. Jiang, X. Zhu, 4-Colouring of generalized signed planar graphs, preprint.

Critical permutation set

Results 00000 Summary

S is Critical

Now we consider a general k, and general graph.

- S is *trivial*: there exists $i_0 \in [k]$ s. t. $\sigma(i_0) \neq i_0$ for any $\sigma \in S$.
- If $S \subset S_k$ is trivial, then every graph G is S-k-colorable.
- We want non-trivial, inverse closed S and S' s.t. $\{id\} \subseteq S \subsetneq S' \subseteq S_k$.

Definition (Critical)

Critical permutation set

Results 00000 Summary

S is Critical

Now we consider a general k, and general graph.

- S is *trivial*: there exists $i_0 \in [k]$ s. t. $\sigma(i_0) \neq i_0$ for any $\sigma \in S$.
- If $S \subset S_k$ is trivial, then every graph G is S-k-colorable.
- We want non-trivial, inverse closed S and S' s.t. $\{id\} \subseteq S \subsetneq S' \subseteq S_k$.

Definition (Critical)

Critical permutation set

Results 00000 Summary

S is Critical

Now we consider a general k, and general graph.

- S is *trivial*: there exists $i_0 \in [k]$ s. t. $\sigma(i_0) \neq i_0$ for any $\sigma \in S$.
- If $S \subset S_k$ is trivial, then every graph G is S-k-colorable.
- We want non-trivial, inverse closed S and S' s.t. $\{id\} \subseteq S \subsetneq S' \subseteq S_k$.

Definition (Critical)

Critical permutation set

Results 00000 Summary

S is Critical

Now we consider a general k, and general graph.

- S is *trivial*: there exists $i_0 \in [k]$ s. t. $\sigma(i_0) \neq i_0$ for any $\sigma \in S$.
- If $S \subset S_k$ is trivial, then every graph G is S-k-colorable.
- We want non-trivial, inverse closed S and S' s.t. $\{id\} \subseteq S \subsetneq S' \subseteq S_k$.

Definition (Critical)

S is Critical

Critical permutation set ○○○○○○○● Results 00000 Summary

• For k = 2, $S = \{id\}$ is critical. Even cycle $\notin \mathcal{H}!$

• For $k \ge 3$? Yes!

Lemma

S is Critical

Critical permutation set ○○○○○○○● Results 00000 Summary

• For k = 2, $S = \{id\}$ is critical. Even cycle $\notin \mathcal{H}!$

• For $k \ge 3$? Yes!

Lemma

S is Critical

Critical permutation set ○○○○○○○● Results 00000 Summary

• For k = 2, $S = \{id\}$ is critical. Even cycle $\notin \mathcal{H}!$

• For $k \ge 3$? Yes!

Lemma

S is Critical

Critical permutation set ○○○○○○○● Results 00000 Summary

• For k = 2, $S = \{id\}$ is critical. Even cycle $\notin \mathcal{H}!$

• For $k \ge 3$? Yes!

Lemma

S is Critical

Critical permutation set ○○○○○○○● Results 00000 Summary

• For k = 2, $S = \{id\}$ is critical. Even cycle $\notin \mathcal{H}!$

• For $k \ge 3$? Yes!

Lemma

Critical permutation set 00000000 Results •0000 Summary

Outline

Introduction

- Coloring
- Signed coloring

Critical permutation set

- Generalized signed coloring
- S is Critical

3 Results • $S_{k_1} \times S_{k_2} \times \ldots \times S_{k_q}$ is critical • $\Gamma_1 \times \Gamma_2 \ldots \times \Gamma_q$ is critical

Summary

Introduction	Critical permutation set	Results	Summary
000000000	0000000	0000	

Theorem

Assume k, q are two positive integers such that $k_1 + k_2 + \ldots + k_q = k$. Then $S = S_{k_1} \times S_{k_2} \times \ldots \times S_{k_q}$ is critical.

• For $k_1 = k_2 = \ldots = k_q = 1$, then q = k and $S = \{id\}$ is critical.

Introduction	Critical permutation set	Results	Summary
000000000	0000000	0000	

Theorem

Assume k, q are two positive integers such that $k_1 + k_2 + \ldots + k_q = k$. Then $S = S_{k_1} \times S_{k_2} \times \ldots \times S_{k_q}$ is critical.

• For $k_1 = k_2 = \ldots = k_q = 1$, then q = k and $S = \{id\}$ is critical.

Introduction	Critical permutation set	Results	Summary
000000000	0000000	00000	

Theorem

Assume k, q are two positive integers such that $k_1 + k_2 + \ldots + k_q = k$. Then $S = S_{k_1} \times S_{k_2} \times \ldots \times S_{k_q}$ is critical.

- For any signature σ , (G, σ) is S-k-colorable.
- $S' = S \cup \{\pi, \pi^{-1}\}$, there exists a signature σ s.t. (G, σ) is S'-k-colorable.

For
$$i \in [q]$$
, $V(K_{k_i}) = \{v_{i,j}\}$, where $j = 1, 2, ..., k_i$
For $i \in [q]$, $V(\overline{K}_{k_q}) = \{u_{i,j}\}$, where $j = 1, 2, ..., k_i$
 $G[A] = K_k$ $G[B] = K_{k_1,k_2,...,k_q}$
 $E[A, B] = \bigcup_{i=1}^q \bigcup_{j=1}^{k_i} \bigcup_{i'=1}^q \bigcup_{j'=1}^{k_i} v_{i,j} u_{i',j'} - \bigcup_{i=1}^q \bigcup_{j=1}^{k_i} v_{i,j} u_{i',j'}$

Introduction	Critical permutation set	Results	Summary
000000000	0000000	00000	

Theorem

Assume k, q are two positive integers such that $k_1 + k_2 + \ldots + k_q = k$. Then $S = S_{k_1} \times S_{k_2} \times \ldots \times S_{k_q}$ is critical.

- For any signature σ , (G, σ) is S-k-colorable.
- $S' = S \cup \{\pi, \pi^{-1}\}$, there exists a signature σ s.t. (G, σ) is S'-k-colorable.

For
$$i \in [q], V(K_{k_i}) = \{v_{i,j}\}$$
, where $j = 1, 2, ..., k_i$
For $i \in [q], V(\overline{K}_{k_q}) = \{u_{i,j}\}$, where $j = 1, 2, ..., k_i$
 $G[A] = K_k$
 $G[B] = K_{k_1,k_2,...,k_q}$
 $E[A, B] = \bigcup_{i=1}^q \bigcup_{j=1}^{k_i} \bigcup_{j'=1}^q \bigcup_{j'=1}^{k_i} v_{i,j} u_{i',j'} - \bigcup_{i=1}^q \bigcup_{j=1}^{k_i} v_{i,j} u_{i',j'}$

Introduction	Critical permutation set	Results	Summary
000000000	0000000	00000	

Theorem

Assume k, q are two positive integers such that $k_1 + k_2 + \ldots + k_q = k$. Then $S = S_{k_1} \times S_{k_2} \times \ldots \times S_{k_q}$ is critical.

- For any signature σ , (G, σ) is S-k-colorable.
- $S' = S \cup \{\pi, \pi^{-1}\}$, there exists a signature σ s.t. (G, σ) is S'-k-colorable.

For
$$i \in [q], V(K_{k_i}) = \{v_{i,j}\}$$
, where $j = 1, 2, ..., k_i$
For $i \in [q], V(\overline{K}_{k_q}) = \{u_{i,j}\}$, where $j = 1, 2, ..., k_i$
 $G[A] = K_k$
 $G[B] = K_{k_1, k_2, ..., k_q}$
 $A, B] = \bigcup_{i=1}^q \bigcup_{j=1}^{k_i} \bigcup_{i'=1}^q \bigcup_{j'=1}^{k_i} v_{i,j} u_{i',j'} - \bigcup_{i=1}^q \bigcup_{j=1}^{k_i} v_{i,j} u_{i,j}$

Critical permutation set 00000000 Results ○○○●O Summary

Outline

Introduction

- Coloring
- Signed coloring

Critical permutation set

- Generalized signed coloring
- S is Critical

3 Results • $S_{k_1} \times S_{k_2} \times \ldots \times S_{k_q}$ is critical • $\Gamma_1 \times \Gamma_2 \ldots \times \Gamma_q$ is critical

Summary

Critical permutation set 00000000 Results

$\Gamma_1 \times \Gamma_2 \ldots \times \Gamma_q$ is critical

Theorem

Assume $[k] = X_1 \cup X_2 \cup \ldots \cup X_q$ and $|X_i| = k_i$. If $S = \Gamma_1 \times \Gamma_2 \times \ldots \times \Gamma_q$, where for each *i* either $\Gamma_i = S_{X_i}$ or $|X_i| = 3$ and Γ_i is the subgroup of S_{X_i} generated by a cyclic permutation of X_i , then S is critical.

Remark: If $|X_i| = 3$, i.e. $X_i = \{a_1, a_2, a_3\}$, then $\Gamma_i = \langle (a_1 a_2 a_3) \rangle$.

For a set X, S_X : the symmetric group of all permutations on X.

Introduction
0000000000

Critical permutation set 00000000 Results 00000

Conjecture

For a positive k, every non-trivial $S \subseteq S_k$ is critical.

- k = 2, the conjecture is true.
- k = 3?
- k = 4?

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq \{id, (12), (34), (12)(34)\}$.

Introduction
0000000000

Summary

Critical permutation set 00000000 Results 0000C

Conjecture

For a positive k, every non-trivial $S \subseteq S_k$ is critical.

- k = 2, the conjecture is true.
- k = 3?
- k = 4?

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq \{id, (12), (34), (12)(34)\}$.

Introduction
0000000000

Summary

Critical permutation set 00000000 Results 0000C

Conjecture

For a positive k, every non-trivial $S \subseteq S_k$ is critical.

- k = 2, the conjecture is true.
- k = 3?
- k = 4?

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq \{id, (12), (34), (12)(34)\}$.

Introduction
0000000000

Critical permutation set 00000000 Results 00000

Conjecture

For a positive k, every non-trivial $S \subseteq S_k$ is critical.

- k = 2, the conjecture is true.
- k = 3?
- k = 4?

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq \{id, (12), (34), (12)(34)\}$.

Introduction
0000000000

Critical permutation set 00000000 Results 00000

Conjecture

For a positive k, every non-trivial $S \subseteq S_k$ is critical.

- k = 2, the conjecture is true.
- k = 3?
- k = 4?

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq \{id, (12), (34), (12)(34)\}$.

Introduction
0000000000

Critical permutation set 00000000 Results 00000

Conjecture

For a positive k, every non-trivial $S \subseteq S_k$ is critical.

- k = 2, the conjecture is true.
- k = 3?
- k = 4?

Theorem

Up to conjugation, if every planar graph is S-4-colorable, then $S \subseteq \{id, (12), (34), (12)(34)\}$.

Critical permutation set 00000000 Results 00000 Summary

Thank you for your attention!

Hao Qi (ASIM)