Lecture 07. Statistical Inference (I):

Point- and Interval Estimation

統計推論 (I): 點估計與區間估計

- 信賴區間(confidence interval, CI)
- · 點估計 point estimation; 點估計值 point estimate
- · 區間估計 interval estimation
- Sampling distribution of a statistic ⇔ parameter
- Properties of an estimator
 - -- Unbiasedness
 - -- Consistency
- Two-sided (two-tailed) CI (One-sided (one-tailed) CI)
- Confidence interval for the population mean with NORMALITY assumption;
 - --- 1. variance known
 - --- 2. variance unknown: The Student's t-statistic
 - --- Graphical illustrations for the meaning of confidence interval
- Confidence interval for the population variance with NORMALITY assumption;
- Confidence interval for the population mean without NORMALITY assumption
- EXAMPLES

常態分布平均值(期望值) μ 之點估計與信賴區間

If
$$X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$$
,

Q: How to estimate μ?

$$\mathbf{A:} \ \hat{\mu} = \overline{X}$$

We call \overline{X} a point estimator of μ (點估計式)。

The realization of \overline{X} , $\overline{x} = (x_1 + x_2 + ... + x_n)/n$, is the point estimate of μ (點估計值)。

PROPERTIES

1. Unbiasedness (不偏性)

E(
$$\overline{X}$$
)=μ
$$E(\overline{X})=E[(X_1+X_2+...+X_n)/n]$$
=(1/n)[E(X₁)+E(X₂)+...+E(X_n)]
=(1/n)[μ+μ+...+μ]= μ

2. Consistency (趨近性;一致性) ★

$$\overline{X} \rightarrow \mu$$
, in probability, or

Pr($|\overline{X} - \mu| < \epsilon$)>1- ϵ , for arbitrary (usually small) $\epsilon > 0$

Weak Law of Large Number (弱大數法則)

Sampling distribution of the sample mean

(under 'NORMALITY' assumption) : (I)

■ If $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$, σ is a known value

$$\longrightarrow \overline{X} \sim N(\mu, \sigma^2/\mathbf{n})$$
 (1)

- \Box That is, the sampling distribution of \overline{X} is still Gaussian (normal), for all \mathbf{n} .
- A suitable standardization [Q1] for (1) gives

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathbf{N} (0, 1). \tag{2}$$

If σ is assumed to be known (but usually it is not), (2) implies:

$$Pr(-1.96 < \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} < 1.96) = 0.95,$$

Pr(-1.645<
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$
 <1.645)=0.90,

Q1: If
$$Y \sim N(\mu, \sigma^2)$$
, $\Rightarrow Y - \mu \sim N(0, \sigma^2)$

$$\Rightarrow Y - \mu / \sigma \sim N(0, 1) \text{ [why??]}$$

$$<= Var[Y - \mu / \sigma] = Var[Y - \mu] / \sigma^2$$

$$= Var[Y] / \sigma^2 = 1.$$

$$\Pr(-\mathbf{Z}_{\alpha/2} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \mathbf{Z}_{\alpha/2}) = 1 - \alpha, \text{ or } = 100(1 - \alpha)\%$$

$$\alpha$$
=0.05, $Z_{0.025}$ =1.96; α =0.10, $Z_{0.05}$ =1.645;...

We have a two-sided confidence interval

Pr(
$$\overline{X} - \mathbf{Z}_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + \mathbf{Z}_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
)=1- \alpha (3)

■ Conclusions

$$\mu \geq 100(1-\alpha)\% \text{ CI} = (\overline{X} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) (3')$$

$$\mu \geq 95\% \text{ CI} = (\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}})$$

$$\mu \geq 90\% \text{ CI} = (\overline{X} - 1.645 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.645 \frac{\sigma}{\sqrt{n}})$$
...

confidence limits

- 信賴區間的解釋 (very important !!)
 - Graphical illustrations for the meaning of confidence

interval

- If thus constructed 95% CI can have infinite numbers of realizations, then, in average, they will cover the true parameter close to 95 times in 100 replicates.

 (In a long run !!) (Frequentist's point of view!!)
 - Q. Why is it necessary to understand the property of confidence interval in the above statement when in practice you will only have a single realization?

■ Q and A

- □ 在同樣的信心水準(confidence)下,不同的統計方法可 能得到不同的信賴區間。不同的信賴區間彼此間是否可 以互相比較?
- □ 信賴區間的長度是否越短越好?
- □ 信賴區間的長度決定於哪些因素?為什麼?

Sampling distribution of the sample mean

(under 'NORMALITY' assumption): (II)

Variance (σ^2) unknown and the Student's t-statistic

When σ (or σ^2) is unknown, it is not reasonable to report the 95%CI (say) of μ in terms of σ . Instead, the σ appeared in (3) should be replaced by an estimate of σ . Conventionally, we use $s=\hat{\sigma}$, where $s^2=\Sigma(x_i-\bar{x}_i)^2/(n-1)$.

Question:

$$\frac{\overline{\mathbf{x}} - \mu}{\sigma / \sqrt{n}} \sim \mathbf{N}(0, 1) \Longrightarrow \frac{\overline{\mathbf{x}} - \mu}{\widehat{\sigma} / \sqrt{n}} \sim \mathbf{N}(0, 1)$$
???

Answer: *

$$\frac{\overline{\mathbf{x}} - \mu}{\widehat{\sigma} / \sqrt{n}} = \frac{\overline{\mathbf{x}} - \mu}{\frac{\sigma}{\sqrt{n}}} \cdot \frac{1}{\frac{\widehat{\sigma}}{\sigma}}$$

$$= \frac{\overline{\mathbf{x}} - \mu}{\frac{\sigma}{\sqrt{n}}} \cdot \frac{1}{\sqrt{\frac{\sum (\mathbf{x_1} - \overline{\mathbf{x}})^2 / \sigma^2}{n-1}}}$$

$$= \mathbf{Z} \cdot \frac{1}{\sqrt{\frac{\chi_{n-1}^2}{n-1}}} \equiv \mathbf{t}_{n-1},$$

where
$$\mathbf{t}_{\nu}^2 \equiv \frac{\chi_1^2/1}{\chi_{\nu}^2/\nu}$$

☐ The results were derived and published by W. S. Gosset (1908, Biometrika) with the pseudonym of 'Student'.

□ Characteristics

\Box Confidence intervals for μ (say, n=21):

$$\mu \gtrsim 100(1-\alpha)\%$$
 CI=

$$(\overline{X} - \mathbf{t}_{n-1}, \alpha/2 \frac{s}{\sqrt{n}}, \overline{X} + \mathbf{t}_{n-1}, \alpha/2 \frac{s}{\sqrt{n}})$$
 (4)

95% CI

$$(\bar{X} - 2.086 \frac{s}{\sqrt{n}}, \bar{X} + 2.086 \frac{s}{\sqrt{n}})$$

90% CI

$$(\bar{X} - 1.725 \frac{s}{\sqrt{n}}, \bar{X} + 1.725 \frac{s}{\sqrt{n}})$$

□ Example: (See the textbook.)

Confidence interval for the population mean without NORMALITY assumption: an application of CLT

 $X_1, X_2, ..., X_n \sim F(\bullet)$, an unknown distribution with $E(X) = \mu$ and $Var(X) = \sigma^2$. Here we derive the approximate 100(1- α) % CI of μ :

since
$$\overline{X} \sim N(\mu, \sigma^2/n)$$
, or $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

The approximate CI is

$$(\overline{X} - \mathbf{Z}_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + \mathbf{Z}_{\alpha/2} \frac{\sigma}{\sqrt{n}});$$
 when n gets larger, the approximation

gets better. However, since σ is usually unknown, it is replaced by s, the sample standard deviation; in this case, the approximate CI is

$$(\overline{X} - \mathbf{Z}_{\alpha/2} \frac{S}{\sqrt{n}}, \overline{X} + \mathbf{Z}_{\alpha/2} \frac{S}{\sqrt{n}})$$

■ Example: Tossing a coin 100 times, and you get 45 'heads'. Let p be the probability of getting a 'head'. Please calculate the 95% CI of p. Ans: $X_1...X_{100}$ ~Ber(p), each X_i =0 (tail) or 1 (head). By CLT,

$$\frac{\overline{\mathbf{x}} - p}{\sqrt{Var(\overline{\mathbf{x}})}} \sim \mathbf{N}(0,1) \text{. If we use } \widehat{Var}(\overline{\mathbf{x}}) = \frac{\widehat{p}(1-\widehat{p})}{n} \text{. then }$$

$$\Pr\{\widehat{p} - \mathbf{z}_{\alpha/2}\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} \leq p \leq \widehat{p} + \mathbf{z}_{\alpha/2}\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\} = 1 - \alpha$$

So, setting alpha=0.05 leads to the 95% CI of p:

(0.45-1.96*sqrt(0.45*0.55/100), 0.45+1.96*sqrt(0.45*0.55/100)) =(0.352, 0.548)