Lecture 07. Statistical Inference (I):

Point- and Interval Estimation

統計推論 **(I) :** 點估計與區間估計

- ‧ 信賴區間**(confidence interval, CI)**
- ‧ 點估計 **point estimation**;點估計值 **point estimate**
- ‧ 區間估計 **interval estimation**
- ‧ **Sampling distribution of a statistic** Ù **parameter**
- ‧ **Properties of an estimator**
	- **-- Unbiasedness**
	- **-- Consistency**
- ‧ **Two-sided (two-tailed) CI (**‧ **One-sided (one-tailed) CI)**
- ‧ **Confidence interval for the population mean with NORMALITY assumption;**
	- **--- 1. variance known**
	- **--- 2. variance unknown: The Student's t-statistic**
	- **--- Graphical illustrations for the meaning of confidence interval**
- ‧ **Confidence interval for the population variance with NORMALITY assumption;**
- ‧ **Confidence interval for the population mean without NORMALITY assumption**
- ‧ **EXAMPLES**

常態分布平均值**(**期望值**) μ** 之點估計與信賴區間 **If** $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$,

Q: How to estimate μ ?

$$
A: \ \hat{\mu} = \overline{X}
$$

We call \overline{X} **a point estimator of** μ **(點估計式)**。

The realization of \overline{X} , $\overline{x} = (x_1 + x_2 + ... + x_n)/n$, is the **point estimate of μ (**點估計值**)**。

PROPERTIES

1. Unbiasedness (不偏性)

$$
E(\overline{X}) = \mu
$$

\n
$$
E(\overline{X}) = E[(X_1 + X_2 + ... + X_n)/n]
$$

\n
$$
= (1/n)[E(X_1) + E(X_2) + ... + E(X_n)]
$$

\n
$$
= (1/n)[\mu + \mu + ... + \mu] = \mu
$$

2. Consistency (趨近性;一致性**)**

 $\overline{X} \rightarrow \mu$, in probability, or **Pr(** $|\overline{X} - \mu| \le \epsilon$)>1- ϵ , for arbitrary (usually small) ϵ >0 **Weak Law of Large Number (**弱大數法則**)**

Sampling distribution of the sample mean

(under 'NORMALITY' assumption) : (I)

 \blacksquare **If** $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$, σ is a known value

$$
\implies \boxed{\overline{X} \sim N(\mu, \sigma^2/n)}
$$
 (1)

 \Box That is, the sampling distribution of \overline{X} is still Gaussian **(normal), for all n**.

■ **A** suitable standardization [Q1] for (1) gives

$$
\frac{\overline{X} - \mu}{\sigma \sqrt{n}} \sim N(0, 1). \tag{2}
$$

If σ is assumed to be known (but usually it is not), (2) **implies:**

$$
\Pr(-1.96 < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < 1.96) = 0.95,
$$
\n
$$
\Pr(-1.645 < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < 1.645) = 0.90, \dots
$$
\n
$$
\Pr(-1.645 < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < 1.645) = 0.90, \dots
$$
\n
$$
\Pr(-1.645 < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < 1.645) = 0.90, \dots
$$
\n
$$
\Pr(-1.645 < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < 1.645) = 0.90, \dots
$$
\n
$$
\Pr(-1.645 < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < 1.645) = 0.90, \dots
$$
\n
$$
\Pr(-1.645 < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < 1.645) = 0.90, \dots
$$
\n
$$
\Pr(-1.645 < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < 1.645) = 0.90, \dots
$$
\n
$$
\Pr(-1.645 < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < 1.645) = 0.90, \dots
$$
\n
$$
\Pr(-1.645 < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < 1.645) = 0.90, \dots
$$
\n
$$
\Pr(-1.645 < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < 1.645) = 0.90, \dots
$$
\n
$$
\Pr(-1.645 < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < 1.645) = 0.90, \dots
$$
\n
$$
\Pr(-1.645 < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < 1.645) = 0.90, \dots
$$
\n
$$
\Pr(-1.645 < \frac{\overline{X} - \mu}{\
$$

$$
\Pr(-Z_{\alpha/2} < \frac{\overline{X} - \mu}{\sigma \sqrt{n}} < Z_{\alpha/2}) = 1 - \alpha, \text{ or } = 100(1 - \alpha)\%
$$
\n
$$
\alpha = 0.05, \ Z_{0.025} = 1.96; \ \alpha = 0.10, \ Z_{0.05} = 1.645; \dots
$$

We have a two-sided confidence interval

$$
Pr(\overline{X} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha \quad (3)
$$

■ Conclusions

$$
\mu \ge 100(1-\alpha)\% \text{ CI} = (\bar{X} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) (3')
$$

\n
$$
\mu \ge 95\% \text{ CI} = (\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}})
$$

\n
$$
\mu \ge 90\% \text{ CI} = (\bar{X} - 1.645 \frac{\sigma}{\sqrt{n}}, \bar{X} + 1.645 \frac{\sigma}{\sqrt{n}})
$$

\n...

 confidence limits

- 信賴區間的解釋 (very important !!)
	- .**Graphical illustrations for the meaning of confidence interval μ**
<u>μεταξίεται με το μεταξύ με το μ</u>
	- .**If thus constructed 95% CI can have infinite numbers of realizations, then, in average, they will cover the true parameter close to 95 times in 100 replicates. (In a long run !!) (Frequentist's point of view!!)**

Q. Why is it necessary to understand the property of confidence interval in the above statement when in practice you will only have a single realization?

■ Q and A

- **□** 在同樣的信心水準**(confidence)**下,不同的統計方法可 能得到不同的信賴區間。不同的信賴區間彼此間是否可 以互相比較?
- **□** 信賴區間的長度是否越短越好?
- **□** 信賴區間的長度決定於哪些因素?為什麼?

Sampling distribution of the sample mean

(under '**NORMALITY**' assumption) **: (II)**

Variance (σ 2) unknown and the Student's t-statistic When σ (or σ^2) is unknown, it is not reasonable to report the **95%CI** (say) of μ in terms of σ . Instead, the σ appeared in (3) **should be replaced by an estimate of σ. Conventionally, we use s=** $\hat{\sigma}$, where s²= \sum (x_i- \bar{x})²/(n-1).

□ The results were derived and published by W. S. Gosset (1908, Biometrika) with the pseudonym of 'Student'.

□ Characteristics

□ Confidence intervals for μ (say, n=21):

 $μ$ \geq 100(1-*α*)% CI=

$$
(\overline{X} - t_{n-1}, \frac{s}{\sqrt{n}}, \overline{X} + t_{n-1}, \frac{s}{\sqrt{n}})
$$
 (4)

95% CI

$$
(\overline{X} - 2.086 \frac{s}{\sqrt{n}}, \overline{X} + 2.086 \frac{s}{\sqrt{n}})
$$

90% CI

$$
(\overline{X} - 1.725 \frac{s}{\sqrt{n}}, \overline{X} + 1.725 \frac{s}{\sqrt{n}})
$$

□ Example: (See the textbook.)

Confidence interval for the population mean without

NORMALITY assumption: an application of CLT $X_1, X_2, \ldots, X_n \sim F(\cdot)$, an unknown distribution with $E(X)=\mu$ and **Var(X)=** σ^2 **.** Here we derive the approximate 100(1-α) % CI of μ :

since
$$
\overline{X} \sim N(\mu, \sigma^2/n)
$$
, or $\frac{\overline{X} - \mu}{\sigma \sqrt{n}} \sim N(0, 1)$

The approximate CI is

 $\overline{\left(X\right)}$ **-Z**_{$\alpha/2$} *n* $\frac{\sigma}{\sqrt{}}$, \overline{X} + $\mathbf{Z}_{a/2}$ *n* $\frac{\sigma}{\sqrt{n}}$; when n gets larger, the approximation **gets better.** However, since σ is usually unknown, it is replaced by \mathbf{s} , **the sample standard deviation; in this case, the approximate CI is**

$$
(\overline{X} - \mathbf{Z}_{\alpha/2} \frac{s}{\sqrt{n}}, \overline{X} + \mathbf{Z}_{\alpha/2} \frac{s}{\sqrt{n}})
$$

■ **Example:** Tossing a coin 100 times, and you get 45 'heads'. Let p be **the probability of getting a 'head'. Please calculate the 95% CI of p. Ans:** $X_1 \ldots X_{100}$ - Ber(p), each $X_i = 0$ (tail) or 1 (head). By CLT,

$$
\frac{\overline{\mathbf{x}} - p}{\sqrt{Var(\overline{\mathbf{x}})}} \sim \mathbf{N}(0, 1)
$$
\nIf we use\n
$$
\mathbf{Pr}\{\hat{p} - \mathbf{z}_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + \mathbf{z}_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \} = 1 - \alpha
$$

So, setting alpha=0.05 leads to the 95% CI of p: (0.45-1.96*sqrt(0.45*0.55/100), 0.45+1.96*sqrt(0.45*0.55/100)) =(0.352, 0.548)