Lecture 09. Regression Analysis

迴歸分析

Introduction

- ① 前面所談的,大部份是"分佈"(distribution)。比如,一組資料,來自某一個分佈 $F(\theta)$, θ 是 parameter (可以是一個"向量"!) 我們可以根據 data,來對 $F(\theta)$ 做一個描述 (description),比如 mean是多少,variance 是多少,...等等。
- 〇 以 Normal distribution 為例: $F(\theta) \equiv N(\mu, \sigma^2)$,參數 $\theta = (\mu, \sigma^2)$,是 2-dimensional。你關心的是參數向量 $\theta = ?$,即 $mean(\mu) = ?$, $variance(\sigma^2) = ?$

或者,你給出一個 confidence interval;

或者,你檢定 $\theta = \theta_0$ (某個 θ_0 值)是否成立。 這些主要都在想要了解 $F(\bullet)=?$

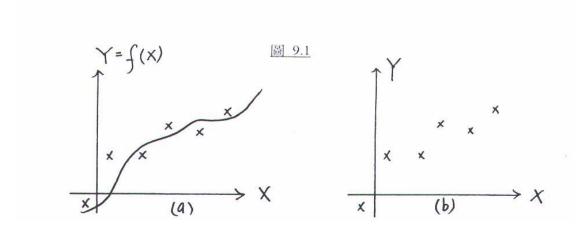
- 再者,在 ANOVA 中,不管是 one-way 或 two-way,背後還是關心幾組的 distribution 是不是一樣。(要看 distribution 是否一樣,最簡單的看法是:先看 mean 一不一樣!)
 但是在 ANOVA 中,還可以引出一個問題:即不同的組(不同的treatment),甚至不同的 block,若有不同的 mean,即是代表treatment(或甚至 block)與 outcome variable 之間有一個"關係"存在。不同的 treatment,引出不同的 outcome 平均值;不同的 block,引出不同的平均 outcome,.....。
- 所以,以下便談談"關係"(relationship)。

Regression

- \bigcirc 兩個變數,比如X和Y之間若有"不同的X值對應出不同的Y值",這種情形(可能)存在,則我們常用一個方程式去描述這種對應關係: Y=f(x)。
- 統計上,你看到的多是具有 random error 存在的情形,這個 random error 怎麼來的,有多大?這種問題常無法回答,無論如何,上面的關係式常是以如下的形式呈現:

$$Y = f(x) + \varepsilon$$

- \bigcirc ε 即是一個 random error。
- 我們的目標,便是根據 data 來猜測 f(ullet)=?
- 〇 這時 data 是什麼呢? Data 就是 (Y_1, X_1) , (Y_2, X_2) , ..., (Y_n, X_n) 。根據這 n 個 data(sample size = n), 你能正確的描述出 $f(\bullet)$ 嗎? 很困難,因為 $f(\bullet)$ 是一個函數,你要正確地描述它,你必須把所有可能的 X 值所對應出來的 Y = f(x) 都描述正確,但這幾乎是不可能的!
- 例如, $f(\bullet)$ 如下圖



實線部份是 $f(\bullet)$,而 data 只是 6 個點 ("x"的部份),你只看到如上圖(b) 的情況。根據圖(b),你怎麼可能把 $f(\bullet)$ <u>從頭到尾都猜對?</u>

- (i) 由上圖(b) ,你可以有兩個猜測法 (比如說!):
 - (a) 第一,你可以猜 Y 與 X 的關係是:

$$y = \sqrt{a + bx}$$
 (拋物線)

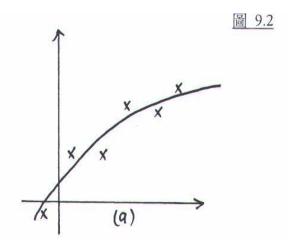
然後根據 data 去 estimate a 和 b (parameters)

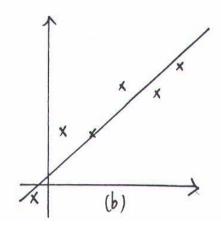
(b) 第二,你可以猜 Y 與 X 的關係是:

$$y = a + bx$$
 (\underline{a})

同樣根據 data 去 estimate a & b。

(ii) 根據 (ii)(a) & (ii)(b)的 estimates,你可能可以得到對 Y 和 X 之關 係之兩種估計,示下圖 (a) & (b)





- (iii) $\Phi(ii)$ 中,你等於把問題簡化了。即,你雖然不知道真正的答案 $f(\bullet)$,但你企圖把問題模式化(即給予一個模式(model));或者說,你把 $f(\bullet)$ 參數化(parameterize),以粗略地求得 Y 與 X 之關係。
- Y = f(x)關係有一個好處,即你可以簡單地對不同的X值預測其Y值(但須注意其"有效範圍"及"可能誤差"!)
- (v) (ii)(b)之模式 y=a+bx, 即稱為一個線性模式 (linear model 或 linear regression model)。

(vi) 你的 data 可能更複雜: (Y_1, X_1, Z_1) , (Y_2, X_2, Z_2) ,…, (Y_n, X_n, Z_n) ,而你建立如下之 model:

$$Y = a + bX + cZ$$

或者,再複雜一點:

$$Y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_p x_p ,$$

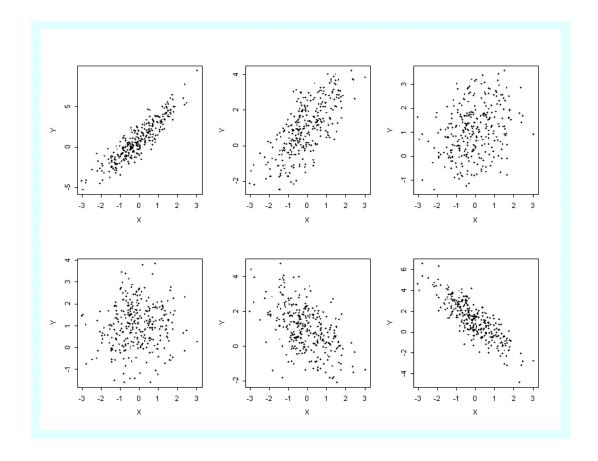
而你的 data 乃是

$$y_1, x_{11}, x_{21}, x_{31}, \dots, x_{p1}$$
 $y_2, x_{12}, x_{22}, x_{32}, \dots, x_{p2}$ \vdots \vdots $y_n, x_{1n}, x_{2n}, x_{3n}, \dots, x_{pn}$ $\}$ 共 n 個 data

Y=a+bX 的模式,叫一個 simple linear regression model, $Y=\beta_0+\beta_1X_1+\dots+\beta_pX_p,\quad p\geq 2\ ,$ 叫 multiple linear regression model。

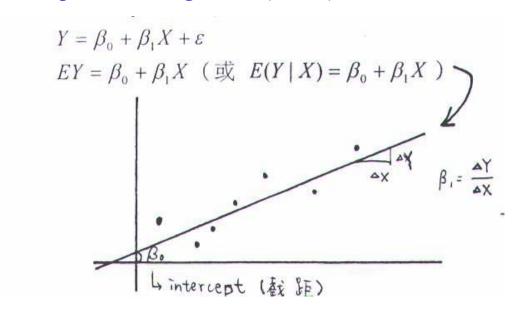
- Correlation
- Y = a + bX ,是對 Y-X 關係的一種描述,其關心的是 Y 與 X 之相對變化 (即 b 之大小)。
- (ii)你也可以關心 Y-X 關係之"強度"。這種強度,一般用 correlation (相關性)或 correlation coefficient (相關係數)表示,其值一般介於 -1 和 +1 之間。
- (iii) Several correlation type: (see below for bivariate-normal case).

A simulated illustration for correlation coefficient=0.9, 0.7, 0.3, 0,-0.5,-0.8; based on 300 pairs of observations.



Regression Model

Simple Linear Regression (Model)



即假設真正的 model 為 $EY = \beta_0 + \beta_1 X$,或 $\mu_{Y|X} = \beta_0 + \beta_1 X$ 意即 給定 X 時,Y 的 "期望值" 為 $\beta_0 + \beta_1 X$,而你看到的是

$$\beta_0 + \beta_1 X + \varepsilon$$
, ε 為 random error 且 $E(\varepsilon) = 0$ [Q1]。

X 稱為 regressor,或 independent variable。(常是可被控制的)

Y 稱為 response, 或 dependent variable, 或 outcome variable, ……

(關於 Q1)

 $E(\varepsilon)=0$ 是必須的;若 $E(\varepsilon)=a\neq 0$, (for some "a"),則 a 與 $oldsymbol{eta}_0$ 不可分辨,可以寫 $oldsymbol{eta}_0^*=oldsymbol{eta}_0+a$,則仍變成 $E(\varepsilon^*)=0$: $EY=oldsymbol{eta}_0^*+oldsymbol{eta}_1X+\varepsilon^*$

Other assumptions

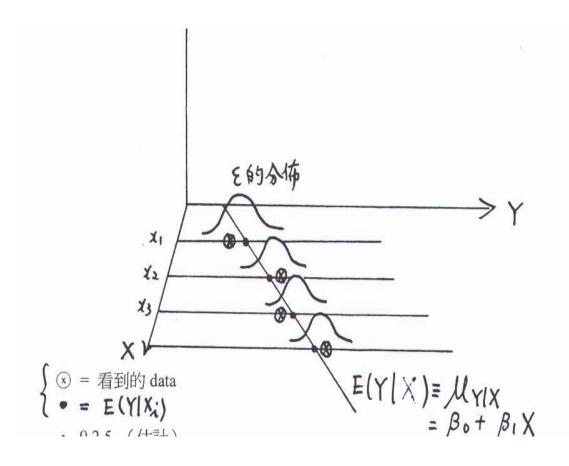
- (i) X 的測量沒有誤差 (without measurement error), 若 X 的測量有誤差,則上面的 model 便叫做一個有 measurement error 的 regression model,或叫 measurement error model,或叫 error-in-variable (EIV) model, 這時問題較複雜。
- (ii)x 與 ε 沒有"關係",或者說 $cov(x, \varepsilon) = 0$,即 x 與 ε 之 covariance = 0,covariance 的定義為:

$$cov(x,\varepsilon) = E\{(x - Ex)(\varepsilon - E\varepsilon)\}$$

$$= E(x\varepsilon) - Ex \cdot E\varepsilon$$

$$\# E \varepsilon = 0 , \text{ for } cov(x,\varepsilon) = E(x\varepsilon)$$

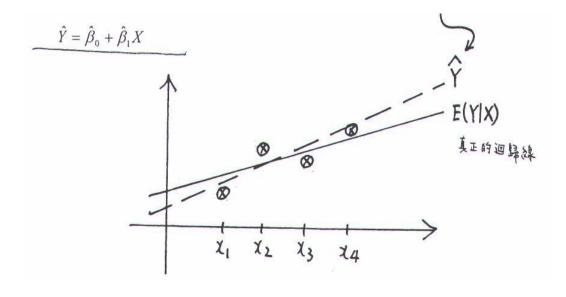
- (iii) Y_1 , Y_2 , ... , Y_n 彼此互相獨立 , 或 ε_1 , ε_2 , ... , ε_n 彼此互相獨立 。
- (iv) ε_1 , ε_2 , ..., ε_n 之 variance 均等於 σ^2 (equal variance) • (iv)' ε_1 , ε_2 , ..., ε_n ~ $N(0, \sigma^2)$



Estimation

根據 上圖 之 data (②),你可能得到一條如下之估計線:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

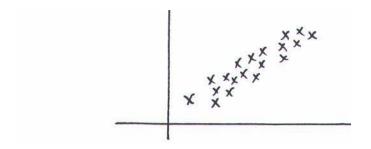


Estimation

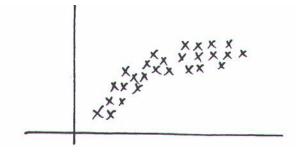
Model and Data

$$\begin{cases} Model & EY = \beta_0 + \beta_1 X \\ Data & (Y_1, X_1), (Y_2, X_2), \dots, (Y_n, X_n) \end{cases}$$

說明: Model 不是預先設下的,而是根據 data 的"長相"來決定的。如果畫出 Y-X 的 scatter plot (散布圖),而得如下之"形式"。 (pattern):



你自然會覺得去 fit 一條直線($EY=eta_0+eta_1X$)是合理的。 但是,如果 Y-X(data)的 pattern 是這樣:



則你就該用別的 Model 了!

• [Continued]

Least Squares (LS) Method

前面所說的 $\hat{Y}=\hat{eta}_0+\hat{eta}_1X$ 這條線是怎樣得到的呢? 方法有很多種,其中一種最有名的叫最小平方法(least square method):

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \varepsilon_{i}, \quad i = 1, 2, \dots, n$$

$$\rightarrow \varepsilon_{i} = Y_{i} - (\beta_{0} + \beta_{1}X_{i})$$

$$\rightarrow \sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} [Y_{i} - \beta_{0} - \beta_{1}X_{i}]^{2} \equiv L$$

L是一個"總誤差" (total error) 的描述量。

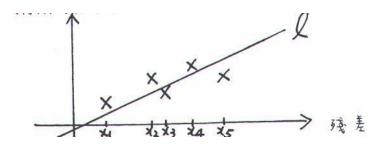
想法:

如果 data 長得如下圖所示:



你比較相信這些 data ("x") 是從 l_1 這條線生成的 (generate),還是從 l_2 ? (ANS: 當然是 l_1)

但 l_2 是很容易被排除的(相較於 l_1),因為它跟 data 差太多,很容易判別。如果有另一條 l_2 '如下,則你要選 l_1 還是 l_2 '呢?



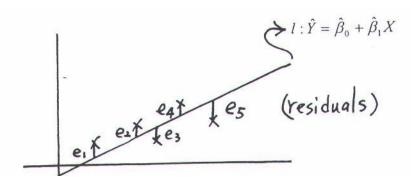
這時很難選了!

必須有一個"判據"(criterion)才行!

對於你所可能考慮的任一條線 l 而言,data 或觀測值

(observations)與l的"縱垂距離"(可以有正負號),

叫 residual,以 e 表示。



把這些 residual 的平方加總起來得 residual sum of squares:

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} [Y_i - \hat{Y}_i]^2$$
$$= \sum_{i=1}^{n} [Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i]^2$$

於是 least squares method 的想法便是考慮這樣的 criterion;你所得到的 $\hat{\beta}_0$, $\hat{\beta}_1$ 乃是所有可能的l線中,使得 residual sum of squares

為最小的 (minimum)!

意思是說,找到 $\beta_0 = \hat{\beta}_0$ 值而 $\beta_1 = \hat{\beta}_1$ 值,使得

$$L = \sum_{i=1}^{n} [Y_i - \beta_0 - \beta_1 X_i]^2$$

為 minimum。

(i) 解法:

解
$$\begin{cases} \frac{\partial L}{\partial \beta_0} = 0 \\ \frac{\partial L}{\partial \beta_1} = 0 \end{cases}$$
 (這組方程式叫 normal equations)

(ii) Normal Equations ∶ (★)

$$\frac{\partial L}{\partial \beta_0} = 0 \quad \Rightarrow \quad \sum 2[Y_i - \beta_0 - \beta_1 X_i] \cdot (-1) = 0$$

$$\Rightarrow \quad \sum [Y_i - \beta_0 - \beta_1 X_i] = 0$$

$$\frac{\partial L}{\partial \beta_1} = 0 \quad \Rightarrow \quad \sum 2[Y_i - \beta_0 - \beta_1 X_i] \cdot (-X_i) = 0$$

$$\Rightarrow \quad \sum X_i [Y_i - \beta_0 - \beta_1 X_i] = 0$$

(iii) Solutions:

$$\begin{cases} \sum Y_i - n\beta_0 - \beta_1 \sum X_i = 0 & \dots \\ \sum X_i Y_i - \beta_0 \sum X_i - \beta_1 \sum X_i^2 = 0 & \dots \end{cases}$$

$$(1)$$
式 $\times \frac{1}{n} \sum X_i$ 得

$$\frac{1}{n}\sum X_i \cdot \sum Y_i - \beta_0 \sum X_i - \beta_1 \cdot \frac{1}{n} (\sum X_i)^2 = 0 \cdot \cdot \cdot \cdot \cdot (1)^i$$

(1)'-(2) 得

$$\beta_1(\sum X_i^2 - \frac{1}{n}(\sum X_i)^2) + \frac{1}{n}\sum X_i \cdot \sum Y_i - \sum X_i Y_i = 0 \cdot \cdot \cdot \cdot (3)$$

解 (3) 式得

$$\hat{\beta}_{1} = \frac{\sum X_{i}Y_{i} - \frac{1}{n}\sum X_{i} \cdot \sum Y_{i}}{\sum X_{i}^{2} - \frac{1}{n}(\sum X_{i})^{2}} \cdot \dots (4)$$

或分子分母同除以 n:

$$\hat{\beta}_{1} = \frac{\frac{1}{n} \sum X_{i} Y_{i} - (\frac{1}{n} \sum X_{i}) (\frac{1}{n} \sum Y_{i})}{\frac{1}{n} \sum X_{i}^{2} - (\frac{1}{n} \sum X_{i})^{2}}$$

$$\equiv \frac{XY - \overline{X} \cdot \overline{Y}}{X^{2} - (\overline{X})^{2}} \qquad (5)$$

或分子分母同乘以 n:

$$\hat{\beta}_1 = \frac{n\sum X_i Y_i - \sum X_i \cdot \sum Y_i}{n\sum X_i^2 - (\sum X_i)^2} \quad \dots (5)'$$

將 (5) 或 (5)'代入 (1) 中,可得

$$\hat{\beta}_{0} = \frac{1}{n} \sum Y_{i} - \hat{\beta}_{1} \cdot \frac{1}{n} \sum X_{i} \qquad (直接由 (1) 解得)$$

$$= \overline{Y} - \hat{\beta} \cdot \overline{X} \qquad (用這個式子即可!)$$

$$= \overline{Y} - \overline{X} \cdot (\frac{XY - \overline{X} \cdot \overline{Y}}{X^{2} - (\overline{X})^{2}}) \qquad (將 (5) 代入)$$

Model Evaluation (模式之評估)

General:

模式之評估分兩部份:

- (i) 是迴歸係數之評估
- (ii) 是整個模式的適合性之評估

迴歸係數的評估,指的是迴歸係數的"顯著性"評估,意即迴歸係數

 (β_1) 是否顯著地不等於 $0 (\neq 0, \text{ significantly})$!

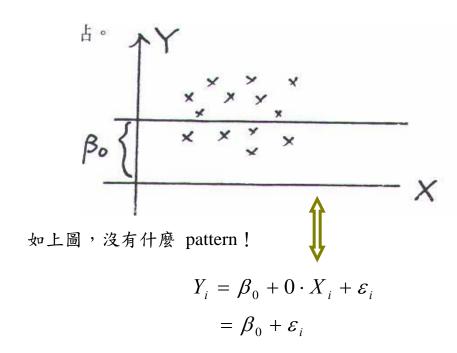
整個模式的適合性評估又包括兩部份:

- (a) 模式的"配適程度" (fitness, fits)
- (b) 模式的"診斷" (diagnostics)

$(H_0:\beta_1=0$ v.s. $H_a:\beta_1\neq 0$)[單一參數]

Idea:

如果 eta_1 顯著地不為 0,則 X 對 Y 才有解釋力(意即 X 的 變化與 Y 的變化是有關係的)! 這時 eta_0 不是重點。 如果 $eta_1=0$,則你看到的 data 便是

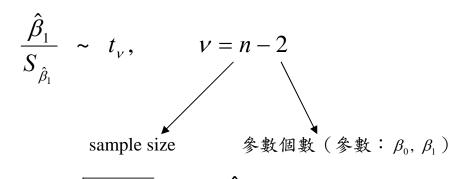


Test statistic

Under H_0 ,

$$\frac{\hat{\beta}_1 - 0}{\sqrt{\operatorname{var} \hat{\beta}_1}} \equiv \frac{\hat{\beta}_1}{\sigma_{\hat{\beta}_1}} \sim N(0, 1)$$

 $\sigma_{\hat{eta}_1}$ 裡有 $\sigma^2[\mathcal{E} \sim N(0, \sigma^2)]$,但 $\sigma_{\text{為 unknown}}$,要用一個"代替品" $\hat{\sigma}$),將這個估計子 $\hat{\sigma}_{\lambda}$ $\sqrt{\operatorname{var}\hat{eta}_1}$ ($\equiv \sigma_{\hat{eta}_1}$) 裡時,記為 $S_{\hat{eta}_1}$,結果是



在這裡 $\sigma_{\hat{\beta}_1} \equiv \sqrt{\text{var } \hat{\beta}_1}$ 叫做 $\hat{\beta}_1$ 的 standard error (標準 誤)!

Note: $(\hat{\beta}_1)$ 的期望值與 confidence interval)

- (a) $E\hat{\beta}_1 = \beta_1$ (true value); that means the so obtained **least** square estimator is unbiased!!
- (b) \hat{eta}_1 的 100(1-lpha)% 省略,但若此 ${\bf CI}$ 包含 0,則表示不能 reject $H_0:eta_1=0$ 。

Extension (★)

對 Multiple regression $EY = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$, 我們要做的是兩件事:

$$\begin{array}{c} H_0:\beta_1=0\\\hline H_0:\beta_2=0\\\hline \\ \text{(i)} \end{array} \qquad \begin{array}{c} \left\{ \begin{aligned} H_a:\beta_1\neq 0\\ H_a:\beta_2\neq 0\\ \\ \vdots\\ H_0:\beta_p=0 \end{aligned} \right\} \end{array}$$

(ii)
$$H_0: \beta_1 = \beta_2 = \beta_3 = \dots = \beta_p = 0$$
 (一起看!) v.s.
$$H_a: \underline{\text{至少有一個}} \ \beta_j \neq 0$$
 [\blacktriangleright 至少有一個 X_i 可以解釋 Y]

對於(i),我們得到的是個別的(分別對 $\beta_1 = 0$, $\beta_2 = 0$, …, $\beta_p = 0$, 之 test)檢定統計量 t_1, t_2, \dots, t_n 。

對於 (ii) 我們會得到一個 F統計量 $F_{a,b}$:

$$\begin{cases} a = p \\ b = n - p - 1 \end{cases}$$

• R^2 ; R-square

 R^2 值又稱判定係數 (coefficient of determination),是模式配適程度的一個指標,其定義及導出如下:

$$Y_i - \overline{Y} = (Y_i - \hat{Y}_i) + (\hat{Y}_i - \overline{Y})$$

$$\Rightarrow \sum (Y_i - \overline{Y})^2 = \sum (Y_i - \hat{Y}_i)^2 + \sum (\hat{Y}_i - \overline{Y})^2 + 2\sum (Y_i - \hat{Y}_i)(\hat{Y}_i - \overline{Y})$$

可以證明第三項 = 0 ,則:

Total sum of squares: (TSS)

 $\sum \left(Y_i - \overline{Y}\right)^2 = \sum \left(Y_i - \hat{Y}_i\right)^2 + \sum \left(\hat{Y}_i - \overline{Y}\right)^2 = RSS + MSS$ \overline{Y} 是一個不變的東西 (:: data 已知), \hat{Y}_i 是你估的,如果你定的模式不離譜, \hat{Y}_i 跟真正的 $EY_i = \beta_0 + \beta_1 X_i$ 應該很接近,則 $\sum \left(\hat{Y}_i - \overline{Y}\right)^2$ 即表示來自於 model 的 sum of squares。剩下的 sum of squares 來自 random error \mathcal{E}_i ,故 $\left(Y_i - \hat{Y}_i\right)^2$ 是模式沒辦法解釋的部份。 R^2 的定義為

$$R^{2} = \frac{\sum (\hat{Y}_{i} - \overline{Y})^{2}}{\sum (Y_{i} - \overline{Y})^{2}} = 1 - \frac{\sum (Y_{i} - \hat{Y}_{i})^{2}}{\sum (Y_{i} - \overline{Y})^{2}}$$
$$= 1 - \frac{RSS}{TSS}$$
$$= \frac{MSS}{TSS}$$

.

Residual and Residual plot: predicted Y vs. residual (**)

$$Y_i - \hat{Y_i}$$
 稱為 residual \circ

Residual 裡涵有許多在 model fitting 背後未知的訊息(information),

比如,若模式正確,則 $Y_i - \hat{Y}_i \ (\equiv e_i)$ 對 \hat{Y}_i 的 plot 應該呈現隨機

分佈的情形 (沒有 pattern)。(**)

如果有 pattern,則表示模式不正確,應重新考慮。

這個 plot,就叫 residual plot![其他還有很多 diagnostic 的方法]

[**: This can be easily justified through 'matrix algebra' and calculations, and is left as a homework.]

Example:

Model: model ln_x51=ind1trsf ind2trsf ind_age x16 ind_op ind_ISS ind_GCSM ind_RTS/include=2 selection=b;

R-square=0.35.6

13- P : e : d : c :	++ + + + + +		++++# ++#+# ++++ #++	++ + + + ++++	
	DF	Sum of Squares	Mean Square	F	Prob>F
Regression Error Total	5 543 548	203.62886430 368.08013585 571.70900015	40.72577286 0.67786397	60.08	0.0001
Variable	Parameter Estimate	Standard Error	Type II Sum of Squares	F	Prob>F
INTERCEP IND1TRSF IND2TRSF IND_OP IND_ISS IND_RTS	10.61327698 0.13118413 0.55302609 1.03361976 0.24761664 0.39342036	0.08701823 0.08299391 0.09147250 0.07889542 0.07766036 0.07527863	10083.72635057 1.69360722 24.77722443 116.34844882 6.89133643 18.51453307	14875.7 2.50 36.55 171.64 10.17 27.31	0.0001 0.1145 0.0001 0.0001 0.0015 0.0001

The estimation of σ^2 (\bigstar)

$$\begin{cases} Y_i = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \boldsymbol{X}_i + \boldsymbol{\varepsilon}_i, \\ EY = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \boldsymbol{X}, \end{cases}$$

Error term $\varepsilon \sim N(0, \sigma^2)$

$$\varepsilon_i = Y_i - (\beta_0 + \beta_1 X_i)$$

Residual $e_i \equiv Y_i - \hat{Y}_i$

$$=Y_i-(\hat{\beta}_0+\hat{\beta}_1X_i)$$

便形成用來"類比" $oldsymbol{\mathcal{E}}_i$ 的量。考慮以下對 $oldsymbol{\sigma}^2$ 的一個估計方式:

$$\hat{\sigma}^{2} = \frac{\sum (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} X_{i})^{2}}{n-2}$$

這個估計式 (estimator) 是對 σ^2 的一個 unbiased estimator。亦即

$$E\hat{\boldsymbol{\sigma}}^2 = \boldsymbol{\sigma}^2$$

Standard error (★)

標準誤(standard error)是對估計式(estimator)之精確度(precision)的一個描述 [in fact, the standard error is the "standard deviation" of the sampling distribution of the estimator],一般即定為估計式之變異數之平方根,以前文之 $\hat{\beta}_1$ 為例,標準誤等於 $\sqrt{Var\left(\hat{\beta}_1\right)}$ 。但這個standard error 裡含有 σ^2 ,是 unknown 的,所以一般便對這個 σ^2 給出一估計,將 $\hat{\sigma}^2$ 代入 $\sqrt{Var\left(\hat{\beta}_1\right)}$ 中(或即代入 $Var\left(\hat{\beta}_1\right)$ 中)。此時不寫 $Var\left(\hat{\beta}_1\right)$,而寫成 $Var\left(\hat{\beta}_1\right)$,代表 $Var\left(\hat{\beta}_1\right)$ 中仍有未知的成分是用其估計式代入的。

矩陣運算 (via matrix algebra) (★)

前述之估計方法若改用矩陣(matrix)的運算方式來表達,一切將變得更簡單:

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} \beta_0 + \beta_1 X_1 \\ \vdots \\ \beta_0 + \beta_1 X_n \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

$$\Leftrightarrow Y = X\beta + \varepsilon, \qquad X = \begin{pmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

最小平方估計式
$$\hat{\beta} = \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} = (XX)^{-1}XY$$
, 而

$$Var(\hat{\beta}) = \sigma^2 (X'X)^{-1}$$

Prediction

當你估計出了 \hat{eta}_0 及 \hat{eta}_1 後,你可以針對任一"合理範圍內"之X值來預測Y值(Q2)。但是這又分成兩部份:

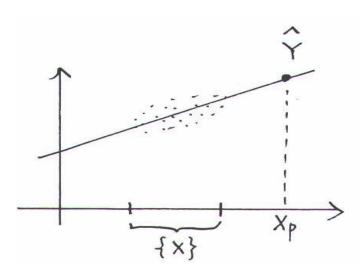
因對一給定之 $X=x_p$,Y可以有一個變動的範圍,其 variance 是 σ^2 (σ^2 可以用 $\hat{\sigma}^2$ 代替)。

我們可以預測兩樣東西,一是Y的mean,二是Y的個別值,對於這

雨種情況,均說為"預測
$$\hat{Y}_p = \hat{\beta}_0 + \hat{\beta}_1 X_p$$
 "。

On Q2

所謂"合理的範圍"指的是 X_p 不能離



 $\underline{\text{"用來得到}}\,\hat{Y}\,\,$ 的那些 $\mathbf{x}\,\,\,\underline{\text{值}(\mathbf{y}}\,\{X\}\,\,\underline{\text{表示})}$ " 太遠。

(continued)

更精確地說,應該是"給定 $X=x_p$,利用 \hat{eta}_0 及 \hat{eta}_1 ,來預測Y之 mean、或預測Y之單一觀察值"!

所謂預測,就是給出一個 100(1-α)% CI。我們可以使用矩陣運算符號很簡單地導出預測式。我們先給出其公式:

預測 mean Y

$$\hat{y} \pm t_{n-2, 1-\alpha/2} \cdot \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x_p - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

Derivation: see the next page!

預測單一的 Y

(variance=預測 mean Y 時之 variance+σ²)

$$\hat{y} \pm t_{n-2, 1-\frac{\alpha}{2}} \cdot \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

顯然,這裡多出了一個 $\hat{\sigma}^2$! 這可以理解。其餘的部分請參看本章之 Appendix 1.

Appendix 1 of Regression

It can be shown by standard argument that, for a sample size n (not necessarily to be large),

$$rac{\hat{y} - \mathrm{E}(\hat{y})}{\{\mathrm{Var}(\hat{y})\}^{1/2}} \sim N(0,1),$$

provided the design matrix is 'regular' (spread out very uniformly!). Because $\hat{y} = X\hat{\beta}$, and $\mathbb{E}(\hat{y}) = X \mathbb{E}(\hat{\beta})$; $\hat{\beta} = (X'X)^{-1}X'Y$, $\mathbb{E}(\hat{\beta}) = (X'X)^{-1}X'\mathbb{E}(Y) = (X'X)^{-1}X'X\beta = \beta$. So, $\mathbb{E}(\hat{y}) = X\beta = \mathbb{E}y$. The previous expression is equivalent to

$$rac{\hat{y} - \mathrm{E}(y)}{\{\mathrm{Var}(X\hat{eta})\}^{1/2}} \sim N(0,1).$$

It should be noted that, for calculating the variance at the denominator, X must be replaced by $X_p = (1, x_p)'$ because the prediction is implemented **on the value of** x_p . Moreover, $\operatorname{Var}(X\hat{\beta}) = X\operatorname{Var}(\hat{\beta})X'$. So, for the value of $x = x_p$, we need to calculate $(1, x_p)\operatorname{Var}(\hat{\beta})(1, x_p)' = \sigma^2(1, x_p)(X'X)^{-1}(1, x_p)'$, due to $\operatorname{Var}(\hat{\beta}) = (X'X)^{-1}\sigma^2$.

From a previous context,

$$(X'X)^{-1} = \frac{1}{n\sum x_i^2 - (\sum x_i)^2} \left(\begin{array}{cc} \sum x_i^2 & -\sum x_i \\ -\sum x_i & n \end{array} \right).$$

So we have

$$(1, x_p)(X'X)^{-1}(1, x_p)' = \frac{\sum x_i^2 - 2x_p \sum x_i + nx_p^2}{n \sum x_i^2 - (\sum x_i)^2}$$
$$= \dots = \frac{1}{n} + \frac{(x_p - \bar{x})^2}{\sum (x_i - \bar{x})^2}.$$

I left the part "..." as an exercise for the reader. Becasue σ should be substituted by its consistent estimator $\hat{\sigma} = \hat{\sigma}_{\beta_0,\beta_1}$, the sampling distribution is no longer Gaussian, but t-distribution on n-2 degrees of freedom.

Example of SAS Code

```
data lbw;
    infile 'd:\class\biostat under 2004\SAS lab\lab08 infant.dat';
    input headcirc length gestage birthwt momage toxemia;
  □proc print;
    run;
       proc reg graphics;
        model headcirc=gestage/cli;
        plot headcirc*gestage/conf95 pred95;
       proc reg graphics;
        model length=gestage/cli;
        plot length*gestage/conf95 pred95;
       run:
   headcirc = 3.9143 +0.7801 gestage
    35.0
                                                                                         N
100
                                                                                         Rsq
0.6095
    32.5
                                                                                         AdjRsq
0.6055
                                                                                         RMSE
1.5904
    30.0
27.5 °
    25.0
    22.5
    20.0
    17.5
        22
                              26
                                          28
                                                                32
                                                                            34
                                                                                       36
                   24
                                              gestage
                      +++ headdirc*gestage
U95M*gestage
                                            PRED*gestage
L95*gestage
                                                              L95M*gestage
U95*gestage
```

Correlation: the bivariate normal distribution (**)

X與 Y 兩個變數的相關強度可以用 correlation coefficient(相關係數)來表示,先假設 X , Y 是 jointly normal (聯合常態分佈)。此時,固定任一 X 值來看, Y 均是常態分佈;相反的,固定任一 Y 值, X 也均是常態分佈,且假設其變異數分別為 σ_Y^2 、 σ_X^2 。

Formulae: Bivariate Normal Distribution

$$f(X_{1},X_{2}) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \exp \left\{ \frac{-1}{2(1-\rho^{2})} \left[\frac{(X_{1}-\mu_{1})^{2}}{\sigma_{1}^{2}} + \frac{(X_{2}-\mu_{2})^{2}}{\sigma_{2}^{2}} - 2\rho \frac{(X_{1}-\mu_{1})(X_{2}-\mu_{2})}{\sigma_{1}\sigma_{2}} \right] \right\}$$

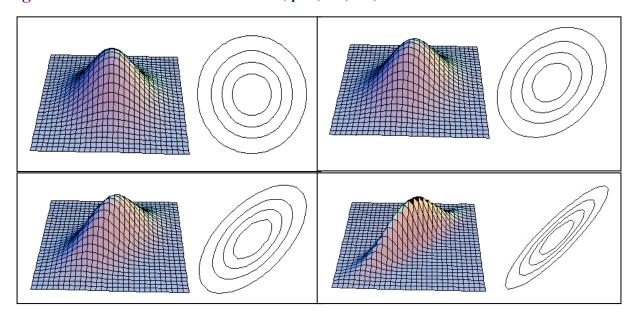
Formulae: Multivariate Normal Distribution

• There is a vector $\mu = [\mu_1, \dots, \mu_N]$ and a symmetric, positive semi-definite covariance matrix Σ ($N \times N$ matrix) such that X has density

$$f_X(x_1, \dots, x_N) = \frac{1}{(2\pi)^{N/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\mathsf{T}} \Sigma^{-1}(x-\mu)\right)$$

where $|\Sigma|$ is the <u>determinant</u> of Σ . Note how the equation above reduces to that of the univariate <u>normal distribution</u> if Σ is a scalar (i.e., a real number). The vector μ in these conditions is the <u>expected value</u> of X and the matrix $\Sigma = AA^T$ is the <u>covariance matrix</u> of the components X.

Figures: Bivariate Normal Distribution, $\rho=0$, 0.3, 0.6, 0.9.



Pearson's correlation coefficient

定義

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{VarX} \cdot \sqrt{VarY}}$$

Note: If the data is not ranked data instead of continuously distributed, the Spearman's rank correlation is used.

Definition of the rank correlation has the same mathematical form, but with original X and Y replaced by ranks.

與迴歸係數之關係 (★)

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \varepsilon_{i}, \qquad \varepsilon \sim N(0, \sigma^{2})$$

$$\overline{Y} = \beta_{0} + \beta_{1}\overline{X} + \overline{\varepsilon}, \qquad \overline{\varepsilon} \approx E\varepsilon = 0$$

$$\Rightarrow Y_{i} - \overline{Y} \approx \beta_{1}(X_{i} - \overline{X})$$

$$\Rightarrow \frac{\sum (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{n} \approx \beta_{1} \frac{\sum (X_{i} - \overline{X})^{2}}{n}$$

$$\Rightarrow \hat{\beta}_{1} = \frac{\sum (X_{i} - \overline{X})(Y_{i} - \overline{Y})/n}{\sum (X_{i} - \overline{X})^{2}/n}$$

$$= \frac{\sum (X_{i} - \overline{X})(Y_{i} - \overline{Y})/n}{\sqrt{\sum (X_{i} - \overline{X})^{2}/n}} \cdot \frac{\sqrt{\sum (Y_{i} - \overline{Y})^{2}/n}}{\sqrt{\sum (X_{i} - \overline{X})^{2}/n}}$$

$$= \hat{\rho}_{XY} \cdot \frac{\hat{\sigma}_{Y}}{\hat{\sigma}}$$

[Note that $R^2 = (\hat{\rho}_{XY})^2$ in simple regression!!]

Multiple Regression (多變數迴歸)(★)

Model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_p X_{pi} + \varepsilon_i$$
, $\varepsilon_i \sim N(0, \sigma^2)$, $i = 1, 2, \dots, n$

 $X_1, X_2, \cdots; X_p$ 乃是用來解釋 Y 的可能結果 (outcome) 的一組解釋數,一位研究者 (investigator) 應當儘可能地收集可以解釋outcome Y 的解釋變數 X_S 。

遺漏了重要的X,會使得估計結果有所偏差(biased)!

Estimation: Least Square (LS) Method

Testing

(i) 個別參數之檢定:

$$\begin{cases} H_0: \beta_j = 0 & (or \ \beta_j = \beta_{j0}) \ v.s. \\ H_a: \beta_j \neq 0 & (or \ \beta_j \neq \beta_{j0}) \end{cases}$$

$$\frac{\hat{\beta}_j - 0}{S_{\hat{\beta}_i}} \sim t_{n-(p+1)} \quad (\because \beta_{j0} = 0)$$

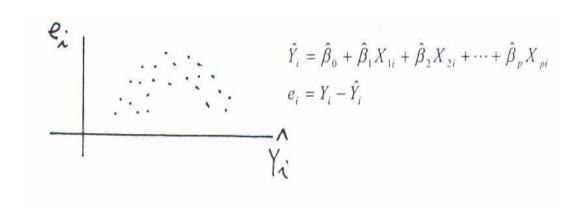
(ii) 模式顯著性檢定 (F-test):

$$\begin{cases} H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0 \\ H_a: \beta_j \neq 0, & \text{for some } j \end{cases}$$
 v.s.

建構出一個統計量
$$F_n(Y,X) \sim F$$
 分佈 $\equiv F_{a,b}$
$$d.f. \begin{cases} a = p \\ b = n - p - 1 \end{cases}$$

Diagnostics

一個初步的診斷 (diagnostic) 方式是做 $\hat{Y_i}$ 對 e_i 的散佈圖 (scatter plot):



如果前面關於迴歸的假設 (Equal variance, normality, …)為正確的,則 \hat{Y}_i 應與 e_i 為 uncorrelated,則其 scatter plot 應沒有什麼 pattern (即非常 random)。反之若呈現某種 pattern (如上圖,是弓形),表示有重要的 information 遺漏了,或變數搜集不足,或變數函數形式不對…。

R^2 ; multiple correlation coefficient

$$R^{2} \equiv \frac{\sum (\hat{Y}_{i} - \overline{Y})^{2}}{\sum (Y_{i} - \overline{Y})^{2}}$$

迴歸係數之解釋

 eta_1 表當 X_2 , X_3 , \cdots ; X_p 固定時, X_I 變動一個單位,Y 的 mean 將變動 eta_1 個單位。

$$(\beta_2, \beta_3, \dots, \beta_p$$
之意義仿之!)

Confounding, 干擾 (★)

當 true model 是 $EY = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p$, 而你卻遺漏了一個重要變數(比如 X_p)時,則你將會 fit 如下之 model:

$$EY = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_{p-1} X_{p-1}$$

此時,你得到的估計式 (LSE), \hat{b}_j 將會是 biased 的,即 $E\hat{b}_j \neq \beta_j$ 。我們說此 bias 的大小為

$$\beta_j - E\hat{b}_j$$

而 Mean Square Error $(MSE) = bias^2 + variance$

$$= (\beta_j - E\hat{b}_j)^2 + Var(\hat{b}_j)$$
 (*)

所以,若 X_p 是一個重要的解釋變數而被你遺漏時,其他變數的參數估計會有 bias 產生。(\mathbb{Q} :如何評估?)

若 bias 很嚴重,我們稱 X_p 是 $\left(X_1 \cdots X_{p-1}\right)$ 與Y之關係的一個干擾因子。故 X_p 一定要納入迴歸模式中,以避免干擾 $\left(\text{i.e.}:$ 避免 $\left(\text{bias}\right)$

(*)

$$MSE = E\{(\hat{b}_{j} - \beta_{j})^{2}\}\$$

$$= E\{(\hat{b}_{j} - E\hat{b}_{j} + E\hat{b}_{j} - \beta_{j})^{2}\}\$$

$$= E\{(\hat{b}_{j} - E\hat{b}_{j})^{2} + 2(\hat{b}_{j} - E\hat{b}_{j})(E\hat{b}_{j} - \beta_{j}) + (E\hat{b}_{j} - \beta_{j})^{2}\}\$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(1) \qquad (2) \qquad (3)$$

$$= E\{(1) + (2) + (3)\}\$$

$$= Va(\hat{b}_{j}) + E((2)) + E((3)), \quad \triangleq E((3)) = (3)$$

$$x,$$

$$E((2)) = 2(E(\hat{b}_{j}) - \beta_{j}) \cdot E(\hat{b}_{j} - E\hat{b}_{j}) = 0 \qquad (\because E(\hat{b}_{j} - E\hat{b}_{j}) = 0)$$

$$= Var(\hat{b}_{j}) + (bias)^{2}$$

分部相關, partial correlation (★)

如果真正的 model 是

$$EY = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

比如 p=2,而你卻 fit $EY=b_0+b_1X_1$,根據你所相信的 model (只有 X_I 對 Y 有解釋力),計算出 Y 與 X_1 之 correlation coefficient 為 $\hat{\rho}_{Y, X_1}$ 。這個 $\hat{\rho}_{Y, X_1}$ 事實上是 biased 的,即它並非反映真正的 Y 與 X_1 之關係。如前,你並未"控制干擾"(control the confounding)。要達到控制干擾:

(i) 做迴歸,即必須做

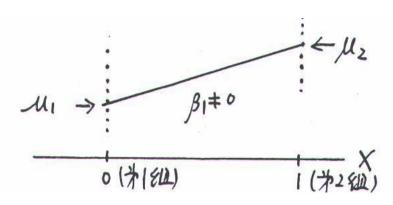
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_p X_{pi} + \varepsilon_i$$

(ii) 求 correlation,即須求 $P_{Y,X_1|X_2,\cdots,X_p}$ 。 此時 β_1 即 X_2,\cdots , X_p 固定時, X_1 改變一個單位,Y 之 mean 改變 幾個單位,而 $P_{Y,X_1|X_2,\cdots,X_p}$ 即 X_2,\cdots , X_p 固定時, X_1 與 Y 之 correlation,叫做 partial correlation (coefficient)。

用 regression 做兩組 data 之 mean 之比較(大)

要看 μ_1 是否等於 μ_2 $(H_0: \mu = \mu_2 \ \textit{v.s.} \ H_a: \mu \neq \mu_2)$ 可以這樣做:

對上面 $n (= n_1 + n_2)$ 個 data $(Y_1, X_1), \dots; (Y_{n_1}, X_{n_1}), (Y_{n_1 + 1}, X_{n_1 + 1}), \dots (Y_n, X_n)$ 做 simple linear regression, $f(X_1, X_1), \dots (X_n, X_n)$ 以圖形表示,如果 $f(X_1, X_1), \dots (X_n, X_n)$ where $f(X_1, X_1), \dots (X_n, X_n), \dots (X_n, X_n)$ 以圖形表示,如果 $f(X_1, X_1), \dots (X_n, X_n)$ 和果 $f(X_1, X_1), \dots (X_n, X_n)$ 和来 $f(X_1, X_1), \dots (X_n, X_n)$



如果 $eta_{\mathrm{l}} = 0$,則表示上面的兩組人之 mean 沒有差異。

用 regression 作 one-way ANOVA (→ two-way 呢?)(★)

假設有3組人:

$$\begin{cases} X_{11}, \dots, X_{1n_1} \sim N(\mu_1, \sigma^2) \\ X_{21}, \dots, X_{2n_2} \sim N(\mu_2, \sigma^2) \\ X_{31}, \dots, X_{3n_3} \sim N(\mu_3, \sigma^2) \end{cases}$$

令

$$\begin{cases} Y_1 &=& X_{11} \\ Y_2 &=& X_{12} \\ \vdots && & \\ Y_{n_1} &=& X_{1n_1} \\ Y_{n_1+1} &=& X_{21} \\ Y_{n_1+2} &=& X_{22} \\ \vdots && & \\ Y_{n_1+n_2+1} &=& X_{21} \\ \vdots && & \\ Y_{n_1+n_2+n_3} &=& X_{3n_3} \end{cases} = \beta_0 + \beta_1 \begin{cases} X_{11} &= 0 && \begin{cases} X_{21} &= 0 \\ X_{22} &= 0 \\ \vdots \\ X_{1n_1} &= 0 \end{cases} && \begin{cases} X_{2n_1} &= 0 \\ \vdots \\ X_{2n_1+1} &= 0 \end{cases} \\ \begin{cases} X_{2n_1+1} &= 0 \\ X_{2n_1+1} &= 0 \\ \vdots \\ X_{2n_1+n_2} &= 0 \end{cases} \\ \vdots && & \\ X_{2n_1+n_2} &= 0 \end{cases}$$

$$\text{(1)} \quad H_0: \mu_1 = \mu_2 = \mu_3 \quad \equiv \quad H_0': \beta_1 = \beta_2 = 0$$

Dummy Variable Technique

前兩節中對解釋變數的設定是一種"技巧",這種變數叫 dummy variable (啞變數)。

若定第1組人為 baseline (基準組), β_1 代表的數便是第 2組人與第1組人之關係; β_3 代表的則是第 3組與第 1組之關係。

SAS-example for coding dummy variables:

```
infile 'd:\Dr ChenRayJ\transfer\work1230.csv' dlm="," missover;
 input id $ name $ sex age ind_age lag $ ind_lag $ ind2_lag $
       x9 x10 $ x11-x21 GCSM ind_GCSM ind_RTS x25-x36 ISS X38 surv x40-x51 transfer;
           if sex="." then delete;
           xx=x9-transfer; /* to check whether or not x9=x52 */
       ind_trsf=(transfer=1); /* indicator variable for direct/indirect transfer */
           ind1trsf=(transfer=2); /* dummy variable 1 for transfer */
           ind2trsf=(transfer=3); /* dummy variable 2 for transfer */
           ln x51=log(x51);
       RTS=0.93678*((x13>3)+(x13>5)+(x13>8)+(x13>12))+
            0.7326*((x16>0)+(x16>49)+(x16>75)+(x16>89))+
            0.2908*((x19>0)+(x19>5)+(x19>9)+(x19>29));
           ind_ISS=(ISS>=25);
           ind_age=(age>=40);
           ind op=(x41>=1);
         data temp; set transf; /* keep id name sex age iss ind iss surv; */
         proc sort; by surv ind ISS iss;
proc print; run;
```

```
nd1tr
                                                                                                              n
                                                            ŧ
               ×
5
1
                                                                                            10.2170
9.3468
11.6458
10.6948
9.3955
11.9273
13.0923
9.6569
11.0211
11.1321
11.6166
12.2264
                                                                                                                                         7.54992
7.54992
7.54992
7.54992
7.54992
7.54992
4.73958
7.54992
7.54992
27364
11462
114158
44125
12034
151345
                                                                      000000000111
                                                          1 1 0 1 1 1 1 1 1
                                                000000
                                     3111111222
                                                ŏ
                                                                                 ŏ
                                                                                                                                          5.67636
7.54992
4.73958
    68333
10923
                                                           ó
                                                                                                                                        4.80396
```

Interaction (交互作用)(★)

Model (2-variable)

$$\begin{split} EY &= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 \cdot X_2 \\ & \triangleq \beta_{12} \neq 0 \quad , \quad \text{叫} \ X_1 \ \text{與} \ X_2 \ \text{之間有 interaction} \ \circ \end{split}$$

Slope dummy

假設
$$X_2$$
只有兩種可能: $X_2 = \begin{cases} 0 \\ 1 \end{cases}$

則當 $X_2=0$ 時,

$$E(Y|X_2=0) = \beta_0 + \beta_1 X_1 + 0 + 0$$

當 $X_2=1$,

$$E(Y|X_2=1) = \beta_0 + \beta_1 X_1 + \beta_2 + \beta_{12} X_1$$

∴固定,(i) 在 $X_2=0$ 時, X_I 改變一個單位, $\mathbf{E}Y$ 改變 $oldsymbol{\beta}_1$ 。

(ii) 在
$$X_2=1$$
時, X_I 改變一個單位, EY 改變 $\beta_1+\beta_{12}$ 。

Interaction 之意義

 X_1 在不同之 X_2 值時,其對Y的"解釋力"不同!

A two-variable example

給定 Table 11.2.2 & Table 11.2.3 (課本),設 fitted model 為

 $\hat{y}_i = 6.21 + 1.03X_{1i} + 41.3X_{2i} + 22.7X_{3i} - 0.703X_{1i} \cdot X_{2i} - 0.510X_{1i} \cdot X_{3i}$ 且有一個 computer output 為 figure 11.2.5 (課本),問:

- (i) 如何描述 X_1 的 effect $(X_1 = age)$?
- (ii) 如何描述 X_1 treatment 的 effect?
- (iii) Age 與 treatment 是否有 interaction?