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7% Hazard function(hazard rate) :

hr(t) At = PAT e[t t+ At)|T >t}

P{t<T<t+At, T>t}
PAT >t}
PA{t<T<t+ At}
PAT >t}
F(t+ At) — F(t)
5(t)

f(t)At

= At ~
() t=0

Instructor: Hong-Dar Isaac Wu Survival Analysis February 14, 2012 2/21



v¢ Survival function :
T is the survival time(T > 0), R.V
Sr(t)=1—-Fr(t) =P AT >t} if Fr(t) =P AT <t}

Eg:

T ~ exp(N), fr(t) = et
F(t)=1—-e?t
S(t)y=e?t

h(t) = );e:; = ), independent of t(constant)
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Eg:

T ~ weibull(a, b), St(t) = e~ or S(t) = e ", a>0& b >0,
a: scale, b : shape

h(t) = ab(at)b~1

fr(t) = ab(at)b—le—(at)’
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vt Power Generalized Weibull
S(t) = 111" r =1 = Weibull

H(t) =cumulative hazard function= [ h(u)du

H(t) = —log5(t
( ) og ( ) Where h(t) _ f((;))
S() = e MO
Therefore
t t t
H(t) = / h(u)du = / f(s“)d“ __ "55(“)
0 0 (u) o S(u)
= —logS(t)+ logS(0) = — log S(t)
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Y¢ In survival analysis, most of the imposed models are talking

about h(t), the hazard rate function.

Therefore

hy
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h
ho

= hazard of population 1

= hazard of population 0

hazard ratio(rate ratio)

1 hp easy to die than hg

1 h; doesn’t easy to die than hg
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Y When you have a set of data, x1,- -+, x, ~ f(x), F(x), S(x),---

Likelihood = [ ] £(x) = [ J{h(x:)S(x)}
i=1

i=1

where h(x;) = g((f() = f(x;) = h(x)S(xi)
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v¢ Mean Residual Life
T~ F(), f(- fo t)dt, E(t fo
(sol):

/O S(t)dt = 5(t)t|8°—/td5(t)

= —/tdS(t)
= /tdF(t)

= ET
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% MRL(mrl) of T given x

E{T—X|T>x}:/io(t—x)

t—Xx

/Oc(t—x)dF(x) = limea, /C(t—x)dF(x)
= lim{(e = )P - / ()
= Iim{(t — c)F(c) — (x — x) /{17 t)}dt}

Cc
= —/1dt+/5tt

= /im{(t—c)—c+t+/c5(t)dt}

/Xc>c S(t)dt X
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> median survival:
xp = inf{x: F(x) < p}

if p =50% = median survival

> Statistical issue:

%(p = 3), confident interval of x,(p = 3)
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¢ log-normal density:

Y =log X ~ Normal, |J| =
Therefore f(y) =

= fx(X)
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1
X

e~ 54
A = ——ep{ - (B 1AL
¢<'°gxa_“)/x
1 q)(Iogx - ,u>
ag
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2 MLEQ = argmaxglg, 0 = (61,--- ,0,)
Ho : 0 = 0o(01 = 010,02 = 020, -+ ,0p = Op0)

Score:

Wald:

To put something on parametric model to do regression analysis.
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“¢ Conclusion(TEMP):
We can do regression analysis through a parametric model, say

weibull.

Example:
Can you fit a weibull regression model on a set of survival data?

Further, can you test g1 = 07

7 1 < treatment group
1 =
0 < control group
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“¢ Weibull distribution fullfils:

1. proportional hazards(Cox 1972; Semi-parametric model)

2. accelerated failure time St(t) = S« (¢(r'z)t)
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¢ S(t) = exp(—at?), So(t) = exp(—apt?)

H(t) = ath
= (2 )(aot") = a7 Ho(t)
2 = ep(8l2) = exp(r'2)

I
—~
o
N
~
|

Ho(t) exp(r'z) <= proportionality = exp(r'z)
=5(t

J exp(—H(t)) )
H(t) = — log 5(t)

S(tiz) = exp(—H(t:2)) = exp(—Ho(t)e"?) = (exp(—Ho(£)))""
= (S0}, p(r,2) = exp(r'2)
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¢ Weibull(a,b)

Porportional hazards Lehmann family

AFT

S(t) rejaramterized as St(t) = exp(—(at)?) = P{T > t} = So(t)
If there is another RV T* = aT(t* = at)

S(t) = exp(—at?)

= P AT >t} =P{aT > at} = P.{T* > at} = S7-(at)

Which means the failure of T* is ”a”-feld accelerated to the

failure of T.
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Y Therefore, if T ~ Weibull(a, b)
Let Y=log T & W:%

(Where Y =p+ow =logt=p+ow .. t=exp(u+ow))

(e/ﬁ»aw)bab(e;ﬁ»aw)bfl)O,;L+awo_

2 = exp(—2

fy = fT\
(|97 = | 4| = exp(p + ow)o, St = exp(—at?),

fr = exp(—at?)abt’~1)

exp(—e") exp(w)

= exp(w — e") + extreme value distribution

FW W) fO fW du =1- exp( W)
Therefore Sy (w) = exp(—e")
February 14, 2012 17 /21
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X UHY=p+ow(=pz+0ow)

PAY >y}
Y—p_y—p

P{—=>7——
(>}

PAw > %} (the ”survival” of w)
exp(—e")

exp(—eet) (2 = b)

exp(—(te™)") = St(6()t) (6(-) = e, p=p'z)

Sr(e"'%t)

SHE

Z That means: Sy(y) = St(e #'2t)
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“¢ R Miller:

Bias-corrected estimator

Eg:(exponential distribution)
Ty, Tp~exp()), St(t) = e estimation St(t) = et
ET=1% 0= =+ therefore Sr(t)=e7
(a reasonable estimator, but it is abriously biased,

L E{eTT) # e M)
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“¢ Bias-corrected estimator:
Let E{T}=0=1

t t S t t
=e T = e_§+(T—9)e_§§+
+.
S Efet) = e h 10+ SE(T - 0))e
. 102 t2 2t
- e 1+2n(04_93)}
N —t
S(t) = €
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TFR , DFR

IFRA , DFRA

F or f has an increasing failure if h(T) is increasing

) increasing = IFRA

H(t) :/0 h(u)du = ulG
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type I censorin
» Censoring P &

type II censoring

right censoring
» Censoring left censoring

interval censoring
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Y T is the survival time of ”1” (imagine there is a
right-censoring” time C)
G>T
you observe Ty if T; < G
you observe Cy if (3 < Ty
T, > G
you observe G, rather than Ty(you only know T, > &)
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Instructor:

Right-censoring;:

T is the true survival time, C is the censoring time. We observe:

®TNC=min(T,C)=x
@0 =1{r<cy

For type II censoring,
X(1) < X(2) <0 K X(r) < X(r+1) <0 < X(n)

Likelihood:

if X1, .00, Xp ~ fo(x),

[ (’lf[lfe(x(i))> (59(X(r)))n_r

Hong-Dar Isaac Wu Survival Analysis February 14, 2012
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v¢ For right-censored data
Ty, T~ fo(t), Fo(t), So(t) =1—Fo(t), G, Gy~ g(:), G(:)

n 5
lp = H fg(X,')éi (1 — G(X,')) g(x,-)l_‘s"Sg(x,-)l_‘S"

where x; = T; N G, §; = 1{T,-§C,-}7 i=1,2,...,n.

¢ Because G and g do not contain the information of 6, the

likelihood can be re-written as

lg—Hf—g X, 59 X, ’—th(x 59 X,)

i=1
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“¢ Statistical information can be made based on the constructed

likelihood. (Parametric!)

%% In some non-or semi-parametric model(s)(say, Cox’s PH model),

you have h(-) & S(-).
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§ 3.6 Counting Process

2o N(t)(t > 0) is a stochastic process
(i) N(0) =
(ii) ()<oo:>P{w N(t) < oo} =1
(iii) The sample path of N(t) are

@ right continuous;

@ piecewise constant;

@ jump size=+1;
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¢ Right-censoring:

Ni(t) = 1i1.<e, 5,=1}

2 N;(t) is the counting process associated with individual i,
> N;(t) = N(t) is also a counting process. It counts the number

of 7deaths” (or "events”) at and prior to time t.
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v¢ For right censored data, the information contained in {N;(t)}7_;
includes knowledge of who has been censored prior to t and who

had died before or at t.

Z(t) —
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Y¢ Def : Data history(or filtration)
The accumulated knowledge about a set of covariates(possibly be
time-dependent), censoring variables, counting processes up to

time t.

Fe = U({Zi(t)7 Ti, 51'}7:17 0< t)

= sigma algebra generated by ({Zi(t), T;, 6;}7—1, 0 < t)

Fs C Fif s < t and F; is a filtration (increasing o-algebra)
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v For a given N(t)
> dN(t) = N(t+ dt—) — N(t—)
> assuming no ”fies”
> For right-censored data,

dN(t) = L

0, 0.W.

if there is ”"one event” accurred at "t”

> at-risk indicator process

Y,(t) = ]‘{X,Zt} =1, ift<T;and t< (
Xi=T,NnGC =0, 0.w.

It is "known” at t(constant) predictable process.

Y(t) = >-", Yi(t) =total# of "at risk” individuals at time t.
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¢ Property :

E{dN(t)|F(t-)}

E{# of obs. w/,t < x; < t + dt,

¢ > t+dt|F(t—)}

= " of total at-risk” x P.{T € [t, t + dt)|F(t—)}
<Z Y,-(t)> x hi(t)dt

> Yi(t)hi(t)dt
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> Y(t)h(t) is called the intensity process

> Ai(t) = Yi(t)hi(t)
Ai(t) = fot Ai(u)du cumulative intensity process

> E{dN(t)|F(t—)} = Y(t)h(t)dt = dA(t) = E{N(t)|F(t—)} = A(t)

dA(t) is called a compensator of dN(t), A(t) is the compensator
of N(t).
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v¢ Def:
M(t) = N(t) — A(t) or dM(t) = dN(t) — dA(t)

E{M(t)|F(t=)} = M(t-)
or E{M(t)|F(s), s<t} = M(s)
or E{dM(t)|F(s), s<t} = 0
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> Predictable process:

E{N(t)|F(t=)} = A(t)
where A(t), Y(t), and Z(t) are predictable.

> Predictable covariation process of

M(t) =< M > (t) = compensator of M?(t)

dM?(t) {M((t + dt)=)}? = {M(t-)}
{M(t=) + dM(1)}? — (M(t-))?

2M(t—)dM(t) + (dM(t))?
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v¢ Property :
Var{dM(t)|F(t—)} =d < M > (t) = dM?(t)

Eg:

Non-parametric estimate of H(t), the cumulative hazard H(t)

A(t) = Y(t)H(t)
dA(t) = Y(t)dH(t)
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> Sol :

N(t) = A(t)+ M(t)
M(t) = N(t)—A(t)
dN(t) = dA(t) + dM(t)
dN(t) _ dA(1) | dM(t)
Y(t) Y(t) (t

F(e-)

e

e e Gy
Let J() 1{v()>0}

Ju)dN(w) [ I(u) ¢ J(u)dM(u)
;‘/o Y{u) - Y(u)y(”d”(t“/o 0
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N(t)
M

/t J(u)dN(u)
0 Y (u)

Instructor: Hong-Dar Isaac Wu

“¢ Non-parametric estimator of H(t)

A(t) + M(t)
N—A

J(ti)

~ Y(t)

Survival Analysis

/O J(u)dH () + /O t i((z)) dM(u)
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2 Martingale Transformation Theorem(1984) R.Gill (JASA)
[ p(t)dM(t) = M*(t) is still a martingale process.

Y = X@B+¢
1 1 1
XY = SX'XBH4=X'e
n n n

B~ (XX)X'Y o0
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7¢ Observe that

t
/ J(u)dH(u) = H(t)1fo<¢<r} = cumulative hazard
0

Instructor: Hong-Dar Isaac Wu

. _ [T dN(u)
CH() = /0 (o)

=
—~~
~
N—r

I

> Ni(t)
Y(t) = D Yi(t)
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I
~—
~
SN—r
Il
o
=
~+
A\
R

1 1

= ot o1y et
1 1 1

= g-gte M=t
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% Q: (HW) Var(H(t)) =?
Fn_a(t), exp{—H(t)} = S(t)

So you can estimate S(t) by exp{—Fn_a(t)} = 5(¢)
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2 If you actually estimate S(-) in the previous manner
= d5(t) = exp{—dH(t)} ~ 1 — dHA(t)

(if dH is considered as being ”very” small)

Y¢ For discrete case and by the predict of consecutive conditional

probability.(see later for K — M estimator)
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Hdé(discrete case) = Sk_m(t)
{t}

t

— JJa - dA(w)

u=0

t
B dN(u)
= Kaplan-Meier(1958) estimator
Sk—m(t)

(More details)(Fleming and Harringtor, 1991, P96~P97)
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£ dS(u)
o S(u-)

H(t):/o h(u)du = (~1)

S(t) :/Ot dS(u) = —/Ot S(u—)dH(u)

which means S(+) is uniqualy determined by H(-)
.. By plugging in A,

3(t)=—/0 §(u—)df4(u):_/0 S(u—)- d\ﬁ’((:))
5(t—) — §(t) = (~1)AS(t) = §(t_)AY/\é£;)

February 14, 2012
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¢ consider all jump points,

o[- 457

S<t
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§ Chapter 4

ve¢ T; may be a failure time or censoring time

We have n observation, T3 < Tp < --- < T,(ordered)

v Let Ty < To < --- < T, be time points where there is exactly

one-failure at time t; =

February 14, 2012 4/21



PAT >t}

St(t)

Pr{T > tj’T > tj_l} . Pr{T > tj_l}

Pr{T > tj’T > tj—l} . Pr{T > tj—l’T > tj_g}-~-

PAT >t|T >t} -P{T >t|T > t}-

Pr{TZ tO}

February 14, 2012
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7 or

di > dj
L) )1 )
di = # of failures occured at t; (if dj > 2 = ties)

Y, = #ofatriskatt; = Z Yi(t;)) = #R(t)
=1

February 14, 2012 6 /21



% Therefore

j .
Sam(y) = 1] {1 - %
i=1 i
= 1 {1 — dg%?} in terms of " counting process "
N(t) =10 Ni(t)
Y(t) =X Yi(t)
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- 1L {8} 11 ")

{i:t;<t} ! {i:ti<t}

o A A Y,
log Skm = Z log Pi  where P; =
Y;P; ~ Bin(Y;, P;)

.~ Ta Ior exp. 1 X
Var(log ) 0 paVar(Pi) =

1PA-P) 1-P
PZ Y, YR

1

N N 1
(* IogP,-z Iog P,'—I-(P,'—P,')F

i

+ remainder>
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W

n
assume { log IAD,} are "mutually indep”

i=1
. 1- P,

= Var{log S = !
{ g KM} YiP;

~ Y

YiP;

d;

_ZV;
y}i—¢

d;
=2 Yi(Yi— d)

February 14, 2012
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> This is called Greenwood's formula derived from "actuarial

method” .
> Again by §—method,

Var§ ~ 5%Var(log 5)

R A d;
oo VarSgm(t) = 512<M(t) Z m

{I':t,'St}

> The "independence” assumption. Is a problem!
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(sol):

logS ~ logS+(5— S)é
~ Var(log §) = %Var(g)

= Var(5) = 5*Var(log 5)
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2 95% Cl of S(t), at every t

g(5(t)) = g(S(t) + (5(t) — S(t))g' (S(t)) +
2(3(0) — S(0)%8" (S(8) + -
Var(g(3) ~ (&/(5(1))) Var(3(1))

v¢ In general, we can meet the following large-sample property:

g(5()) —g(5(1))
Varg (5(1))

= :l:Zoz/Z
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2 The 100(1-a)% Cl of g(5(¢)), at tis
g(g(t)) + Za/2g'(5(t)) Varg(t)

Now, take g(x) = log{—logx} 0<x<1

i.e. g(+) is the so-called complementary log — log link

1 1 1
Therefore g'(x) = T
erefore g'(x) _|ng( l)x x log x
So
~ 1 S
log { —log 5(t)} & Zujp 5/ VarS(1)

S(t)log S(t)
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\/Vars _ Vars _
=o0gor 57 = O's

e Let 3
Further, log S(t) = —H(t) or log 5(t) =

~H(t)

Za/27% = logf
log S

log (I:I(t)) + log(f) = —flog S, Iog S

> Cl of H(t): exp{log H +logf} = HO

> Cl of S: )
hee(-AlY) = ((3(0)7, (3())

exp{—H} = (exp{ ~

CD
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v¢ Two-sample comparison Test Hy : 1 = pp T — test
Hy :m = my?

my = inf{x : F(x)

my = inf{x : G(x)
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v Hy : 51(1') = Sz(t) Vit (or hl(t) = hz(t))

Groupl: treatment Group2: control

P.{the death € G1|one death at time t;} = m
ny +my
. m
P.{the death € G2|one death at time t;} =
ny+m

February 14, 2012 16 / 21



“c a is the random variable (fixed marginal total)

a= 1 P = n1+m1
_ _ ml
a= 07 p= nl+ml

E(a) = p, Var(a) = p(1 - p)

death | survival
Gl | a nl
G2 || 1-a m1l
1 Ny —1
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Ex: n1 =5, ml=5

at t; || death | survival at t» || death | survival

Gl 1 4 5 Gl 0 3 3

G2 0 5 5 G2 1 4 5
1 9 10 1 7 8

nj =300, Ya(ty), mp =0 Ya(t)

P.{az = 1|one death at t,} = I’\’/—i

P.{a; = Olone death at t,} = %

February 14, 2012
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v¢ k-number 2 x 2 table

ay | b || m ak | bi || nk

C1 d1 mp R Ck dk myg

st |t || My Sk |tk || Nk

d d
(1 =odds ratio of table I:Z—Ci C Pk = %
Sum:
k k
i1 —E(Q iy ai) ~ N(0,1)
Var(2; a1)
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Ho : ¢1 =+ = ¢k = o (common odds ratio homogeneity)

Po =7 estimation!
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PAY dix = ].,

N
P =1 death at t,} = ————
{ ak |one death at t;} P
E(ax) = —% if hi(t) = ha(2)
K ny + my ! 2

k 2

(E’ 18,‘1‘21 l(n‘+ml)> Ho XZ

~ A1
\/E: 1 ’n+lm,n+m,)
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2t Note:

d| N-d

nmd(N — d) d=1 nm

Varla) = Tev—1) - W
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