Survival Analysis

Instructor: Hong-Dar Isaac Wu

Department of Applied Mathematics
National Chung Hsing University

February 14, 2012

☆ Hazard function(hazard rate) :

$$h_{T}(t)\Delta t = P_{r}\{T \in [t, t + \Delta t) | T \ge t\}$$

$$= \frac{P_{r}\{t \le T < t + \Delta t, T \ge t\}}{P_{r}\{T \ge t\}}$$

$$= \frac{P_{r}\{t \le T < t + \Delta t\}}{P_{r}\{T \ge t\}}$$

$$= \frac{F(t + \Delta t) - F(t)}{S(t)}$$

$$= \frac{f(t)\Delta t}{S(t)}, \Delta t \approx 0$$

☆ Survival function :

T is the survival time (T > 0), R.V

$$S_T(t)=1-F_T(t)=P_r\{T>t\} \text{ if } F_T(t)=P_r\{T\leq t\}$$

Eg:

$$T \sim exp(\lambda), f_T(t) = \lambda e^{-\lambda t}$$

$$F(t) = 1 - e^{-\lambda t}$$

$$S(t) = e^{-\lambda t}$$

$$h(t) = \frac{\lambda e^{-\lambda t}}{e^{-\lambda t}} = \lambda$$
, independent of t(constant)

Eg:

$$T \sim weibull(a, b), S_T(t) = e^{-(at)^b} \text{ or } S(t) = e^{-at^b}, a > 0 \& b > 0,$$

 $a : scale, b : shape$
 $h(t) = ab(at)^{b-1}$
 $f_T(t) = ab(at)^{b-1}e^{-(at)^b}$

☆ Power Generalized Weibull

$$S(t) = e^{1 - \{1 + (at)^b\}^r}, r = 1 \Rightarrow Weibull$$

$$H(t) \equiv \text{cumulative hazard function} = \int_0^t h(u) du$$

$$\begin{cases} H(t) = -\log S(t) \\ S(t) = e^{-H(t)} \end{cases} \text{ where } h(t) = \frac{f(t)}{S(t)}$$
Therefore

 $H(t) = \int_0^t h(u)du = \int_0^t \frac{f(u)du}{S(u)} = -\int_0^t \frac{dS(u)}{S(u)}$

$$= -\log S(t) + \log S(0) = -\log S(t)$$

☆ In survival analysis, most of the imposed models are talking about h(t), the hazard rate function.

$$h_1$$
 = hazard of population 1

$$h_0$$
 = hazard of population 0

Therefore

$$\frac{h_1}{h_0}$$
 = hazard ratio(rate ratio)
> 1 h_1 easy to die than h_0
< 1 h_1 doesn't easy to die than h_0

When you have a set of data, $x_1, \dots, x_n \sim f(x), F(x), S(x), \dots$

$$\text{Likelihood} = \prod_{i=1}^n f(x_i) = \prod_{i=1}^n \{h(x_i)S(x_i)\}$$

where
$$h(x_i) = \frac{f(x_i)}{S(x_i)} \Rightarrow f(x_i) = h(x_i)S(x_i)$$

☆ Mean Residual Life

$$T \sim F(\cdot), \ f(\cdot), \ E(T) = \int_0^\infty t f(t) dt, \ E(t) = \int_0^\infty S(t) dt$$
 (sol):

$$\int_{0}^{\infty} S(t)dt = S(t)t|_{0}^{\infty} - \int tdS(t)$$

$$= -\int tdS(t)$$

$$= \int tdF(t)$$

$$= ET$$

Arr MRL(mrl) of T given x

$$E\{T - x | T > x\} = \int_{t - x}^{\infty} (t - x) \left(\frac{f(t)}{S(x)}\right) dt = \frac{\int_{x}^{\infty} (t - x) f(t) dt}{S(x)}$$

$$\int_{x}^{\infty} (t-x)dF(x) = \lim_{c \to \infty} \int_{x}^{c} (t-x)dF(x)$$

$$= \lim\{(t-x)F(t)|_{x}^{c} - \int_{x}^{c} F(t)dt\}$$

$$= \lim\{(t-c)F(c) - (x-x)F(x) - \int_{x}^{c} \{1 - S(t)\}dt\}$$

$$\Rightarrow - \int_{x}^{c} 1dt + \int_{x}^{c} S(t)dt$$

$$= \lim\{(t-c) - c + t + \int_{x}^{c} S(t)dt\}$$

$$\approx \int_{x}^{\infty} S(t)dt$$

median survival:

$$x_p = \inf\{x : F(x) \le p\}$$

if $p = 50\% \Rightarrow median survival$

> Statistical issue:

$$\hat{x}_p(p=\frac{1}{2})$$
, confident interval of $x_p(p=\frac{1}{2})$

☆ log-normal density:

$$Y = \log X \sim Normal, |J| = \frac{1}{X}$$
Therefore $f(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{(y-\mu)^2}{2\sigma^2}\}$

$$\Rightarrow f_X(x) = f_Y(y(x))|J| = \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{(\log x - \mu)^2}{2\sigma^2}\}\frac{1}{x}$$

$$= \phi\left(\frac{\log x - \mu}{\sigma}\right)/x$$

$$S(x) = 1 - \Phi\left(\frac{\log x - \mu}{\sigma}\right)$$

$$MLE\widehat{\theta} = \operatorname{argmax}_{\theta} L_{\theta}, \ \theta = (\theta_1, \cdots, \theta_p)$$

$$H_0: \theta = \theta_0(\theta_1 = \theta_{10}, \theta_2 = \theta_{20}, \cdots, \theta_p = \theta_{p0})$$

Score:

$$\frac{\partial}{\partial \theta} (\log L_{\theta}) = \frac{\partial}{\partial \theta} (I_{\theta})$$
$$(\frac{\partial}{\partial \theta} I_{\theta})' Var(\frac{\partial}{\partial \theta} I_{\theta}) (\frac{\partial}{\partial \theta} I_{\theta})|_{\theta = \widehat{\theta}}$$

Wald:

$$\widehat{\theta}'(\mathit{Var}\widehat{\theta})^{-1}\widehat{\theta} = \widehat{\theta}'\mathfrak{I}_{\theta}\widehat{\theta}$$

To put something on parametric model to do regression analysis.

☆ Conclusion(TEMP):

We can do regression analysis through a parametric model, say weibull.

Example:

Can you fit a weibull regression model on a set of survival data? Further, can you test $\beta_1 = 0$?

$$Z_1 = \left\{ egin{array}{ll} 1 & \leftarrow {
m treatment \ group} \\ 0 & \leftarrow {
m control \ group} \end{array}
ight.$$

☆ Weibull distribution fullfils:

- 1. proportional hazards(Cox 1972; Semi-parametric model)
- 2. accelerated failure time $S_T(t) = S_{T^*}(\phi(r'z)t)$

$$S(t) = \exp(-at^b), S_0(t) = \exp(-a_0t^b)$$

$$H(t) = at^b$$

$$= (\frac{a}{a_0})(a_0t^b) = a^*H_0(t)$$

$$a^* = \exp(\beta'_*z) = \exp(r'z)$$

$$H(t;z) = H_0(t) \exp(r'z) \iff proportionality = \exp(r'z)$$

$$\downarrow \qquad \frac{\exp(-H(t)) = S(t)}{H(t) = -\log S(t)}$$

$$S(t;z) = \exp(-H(t;z)) = \exp(-H_0(t)e^{r'z}) = (\exp(-H_0(t)))^{\mu(r,z)}$$

$$= \{S_0(t)\}^{\mu(r,z)}, \ \mu(r,z) = \exp(r'z)$$

☆ Weibull(a,b)

$$S(t) = \exp(-at^b) \begin{cases} Porportional \ hazards \ Lehmann \ family \\ AFT \end{cases}$$
 $S(t) \ rejaramterized \ as \ S_T(t) = \exp(-(at)^b) = P_r\{T > t\} \equiv S_0(t)$
If there is another RV $T^* = aT(t^* = at)$

$$\Rightarrow P_r\{T>t\} = P_r\{aT>at\} = P_r\{T^*>at\} \equiv S_{T^*}(at)$$

Which means the failure of T^* is "a"-feld accelerated to the failure of T.

Arr Therefore, if $T \sim Weibull(a, b)$

Let
$$Y = \log T$$
 & $w = \frac{Y - \mu}{\sigma}$
(Where $Y = \mu + \sigma w \Rightarrow \log t = \mu + \sigma w$ $\therefore t = \exp(\mu + \sigma w)$)
$$f_W = f_T \left| \frac{dw}{dT} \right|^{-1} = \exp(-a(e^{\mu + \sigma w})^b ab(e^{\mu + \sigma w})^{b-1})\sigma^{\mu + \sigma w}\sigma$$
($\left| \frac{dw}{dT} \right|^{-1} = \left| \frac{dt}{dw} \right| = \exp(\mu + \sigma w)\sigma$, $S_T = \exp(-at^b)$,
$$f_T = \exp(-at^b)abt^{b-1}$$
)
$$= \exp(-e^w)\exp(w)$$

$$= \exp(w - e^w) \leftarrow \text{extreme value distribution}$$

$$F_W(w) = \int_0^w f_W(u) du = 1 - \exp(-e^w)$$

Therefore $S_W(w) = \exp(-e^w)$

$$S_{Y}(y) = P_{r}\{Y > y\}$$

$$= P_{r}\{\frac{Y - \mu}{\sigma} > \frac{y - \mu}{\sigma}\}$$

$$= P_{r}\{w > \frac{y - \mu}{\sigma}\} \text{ (the "survival" of } w)$$

$$= \exp(-e^{\frac{y - \mu}{\sigma}})$$

$$= \exp(-e^{\frac{y}{\sigma}}e^{-\frac{\mu}{\sigma}}) (\frac{1}{\sigma} = b)$$

$$= \exp(-(te^{-\mu})^{b}) = S_{T}(\phi(\cdot)t) (\phi(\cdot) = e^{-\mu}, \ \mu = \beta'z)$$

$$= S_{T}(e^{-\beta'z}t)$$

Arr That means: $S_Y(y) = S_T(e^{-\beta'z}t)$

R. Miller:

Bias-corrected estimator

Eg:(exponential distribution)

$$T_1,\cdots,T_n\sim exp(\lambda),\ S_T(t)=e^{-\lambda t}\ {
m estimation}\ \widehat{S}_T(t)=e^{-\widehat{\lambda} t}$$

$$E\overline{T}=rac{1}{\lambda},$$
 so $\widehat{\lambda}=rac{1}{\overline{T}},$ therefore $\widehat{S}_{T}(t)=e^{-rac{t}{\overline{T}}}$

(a reasonable estimator, but it is abriously biased,

$$:: E\{e^{-\frac{t}{7}}\} \neq e^{-\lambda t})$$

☆ Bias-corrected estimator:

Let
$$E\{\overline{T}\} = \theta = \frac{1}{\lambda}$$

$$\Rightarrow e^{-\frac{t}{\overline{T}}} = e^{-\frac{t}{\theta}} + (\overline{T} - \theta)e^{-\frac{t}{\theta}}\frac{t}{\theta^2} + \frac{1}{2}(\overline{T} - \theta)^2 e^{-\frac{t}{\theta}}\left\{\left(\frac{t}{\theta^2}\right)^2 - \frac{2t}{\theta^3}\right\} + \cdots$$

$$\Rightarrow E\{e^{-\frac{t}{\overline{T}}}\} = e^{-\frac{t}{\theta}} + 0 + \frac{1}{2}E\{(\overline{T} - \theta)^2\}e^{-\frac{t}{\theta}}\left\{\frac{t^2}{\theta^4} - \frac{2t}{\theta^3}\right\}$$

$$= e^{-\frac{t}{\theta}}\left\{1 + \frac{1}{2}\frac{\theta^2}{n}\left(\frac{t^2}{\theta^4} - \frac{2t}{\theta^3}\right)\right\}$$

$$\widetilde{S}(t) = \frac{e^{-\widehat{\lambda}t}}{1 + \frac{1}{2}}$$

$$\widetilde{S}(t) = \frac{e^{-\lambda t}}{1 + \frac{1}{2n}(t^2\widehat{\lambda}^2 - 2t\widehat{\lambda})}$$

- ™ TFR, DFR
- IFRA , DFRA

F or f has an increasing failure if h(T) is increasing

$$H(t) = \int_0^t h(u)du \Rightarrow \frac{H(t)}{t}$$
 increasing \Rightarrow IFRA

Survival Analysis

Instructor: Hong-Dar Isaac Wu

Department of Applied Mathematics
National Chung Hsing University

February 14, 2012

Censoring { type I censoring type II censoring

- \nearrow T_1 is the survival time of "1" (imagine there is a
 - "right-censoring" time C_1)
 - $C_1 > T_1$

you observe T_1 if $T_1 \leq C_1$

you observe C_1 if $C_1 < T_1$

 $T_2 > C_2$

you observe C_2 rather than T_2 (you only know $T_2 > C_2$)

☆ Right-censoring:

T is the true survival time, C is the censoring time. We observe:

①
$$T \cap C \equiv \min(T, C) \equiv x$$

②
$$\delta = \mathbf{1}_{\{T \leq C\}}$$

☆ For type II censoring,

$$x_{(1)} < x_{(2)} < \cdots < x_{(r)} < x_{(r+1)} < \cdots < x_{(n)}$$

☆ Likelihood:

if
$$x_1,...,x_n \sim f_{\theta}(x)$$
,

$$l_{\theta} = \binom{n}{r} \left(\prod_{i=1}^{r} f_{\theta}(x_{(i)}) \right) \left(S_{\theta}(x_{(r)}) \right)^{n-r}$$

☆ For right-censored data

$$egin{aligned} T_1,...T_n &\sim f_ heta(t), \ F_ heta(t), \ S_ heta(t) = 1 - F_ heta(t), \ C_1,...,C_n \sim g(\cdot), \ G(\cdot) \end{aligned} \ l_ heta &= \prod_{i=1}^n f_ heta(x_i)^{\delta_i} igg(1 - G(x_i)igg)^{\delta_i} g(x_i)^{1-\delta_i} S_ heta(x_i)^{1-\delta_i} \end{aligned}$$

where $x_i = T_i \cap C_i$, $\delta_i = 1_{\{T_i < C_i\}}$, i = 1, 2, ..., n.

Because G and g do not contain the information of θ , the likelihood can be re-written as

$$l_{\theta} = \prod_{i=1}^{n} f_{\theta}(x_i)^{\delta_i} S_{\theta}(x_i)^{1-\delta_i} = \prod_{i=1}^{n} h_{\theta}(x_i)^{\delta_i} S_{\theta}(x_i)$$

☆ Statistical information can be made based on the constructed likelihood. (Parametric!)

In some non-or semi-parametric model(s)(say, Cox's PH model), you have $h(\cdot)$ & $S(\cdot)$.

§ 3.6 Counting Process

- $\lambda N(t)(t \ge 0)$ is a stochastic process
 - (i) N(0) = 0
 - (ii) $N(t) < \infty \Rightarrow P_r\{w; N(t) < \infty\} = 1$
 - (iii) The sample path of N(t) are
 - ① right continuous;
 - 2 piecewise constant;
 - 3 jump size=+1;

☆ Right-censoring:

$$N_i(t) = 1_{\{T_i \leq t, \ \delta_i = 1\}}$$

 $N_i(t)$ is the counting process associated with individual i, $\sum N_i(t) \equiv N(t) \text{ is also a counting process. It counts the number of "deaths" (or "events") at and prior to time <math>t$.

For right censored data, the information contained in $\{N_i(t)\}_{i=1}^n$ includes knowledge of who has been censored prior to t and who had died before or at t.

$$Z(t) \longrightarrow$$

☆ Def : Data history(or filtration)

The accumulated knowledge about a set of covariates (possibly be time-dependent), censoring variables, counting processes up to time t.

$$\begin{split} F_t &= \sigma(\{Z_i(t),\ T_i,\ \delta_i\}_{i=1}^n,\ 0 < t) \\ &\equiv \text{sigma algebra generated by} \left(\{Z_i(t),\ T_i,\ \delta_i\}_{i=1}^n,\ 0 < t\right) \end{split}$$

 $F_s \subseteq F_t$ if s < t and F_t is a filtration (increasing σ -algebra)

 \Rightarrow For a given N(t)

$$\rightarrow$$
 $dN(t) = N(t + dt -) - N(t -)$

- assuming no "fies"
- > For right-censored data,

$$dN(t) = \begin{cases} 1, & \text{if there is "one event" accurred at "t"} \\ 0, & \text{o.w.} \end{cases}$$

> at-risk indicator process

$$\begin{cases} Y_i(t) = 1_{\{x_i \ge t\}} = 1, & \text{if } t \le T_i \text{ and } t \le C_i \\ X_i \equiv T_i \cap C_i = 0, & \text{o.w.} \end{cases}$$

It is "known" at t(constant) predictable process.

$$Y(t) = \sum_{i=1}^{n} Y_i(t) = \text{total} \# \text{ of "at risk" individuals at time } t.$$

☆ Property:

$$E\{dN(t)|F(t-)\} = E\{\# \text{ of obs. } w/, t \le x_i \le t + dt,$$

$$c_i > t + dt|F(t-)\}$$

$$= "\# \text{ of total at-risk"} \times P_r\{T \in [t, t + dt)|F(t-)\}$$

$$= \left(\sum Y_i(t)\right) \times h_i(t)dt$$

$$= \sum Y_i(t)h_i(t)dt$$

- $\rightarrow Y(t)h(t)$ is called the intensity process
- > $\lambda_i(t) = Y_i(t)h_i(t)$ $\Lambda_i(t) = \int_0^t \lambda_i(u)du$ cumulative intensity process
- $ightharpoonup E\{dN(t)|F(t-)\} = Y(t)h(t)dt = d\Lambda(t) \Rightarrow E\{N(t)|F(t-)\} = \Lambda(t)$

 $d\Lambda(t)$ is called a compensator of dN(t), $\Lambda(t)$ is the compensator of N(t).

☆ Def:

$$M(t) = N(t) - \Lambda(t) \text{ or } dM(t) = dN(t) - d\Lambda(t)$$

$$E\{M(t)|F(t-)\} = M(t-)$$
or
$$E\{M(t)|F(s), s < t\} = M(s)$$
or
$$E\{dM(t)|F(s), s < t\} = 0$$

> Predictable process:

$$E\{\Lambda(t)|F(t-)\}=\Lambda(t)$$

where $\Lambda(t)$, Y(t), and Z(t) are predictable.

> Predictable covariation process of

$$M(t) \equiv < M > (t) \equiv {\rm compensator~of}~M^2(t)$$

$$dM^{2}(t) = \{M((t+dt)-)\}^{2} - \{M(t-)\}^{2}$$
$$= \{M(t-) + dM(t)\}^{2} - (M(t-))^{2}$$
$$= 2M(t-)dM(t) + (dM(t))^{2}$$

☆ Property:

$$Var\{dM(t)|F(t-)\} = d < M > (t) = dM^2(t)$$

Eg:

Non-parametric estimate of H(t), the cumulative hazard $\hat{H}(t)$

$$\Lambda(t) = Y(t)H(t)$$

$$d\Lambda(t) = Y(t)dH(t)$$

> Sol :

$$N(t) = \Lambda(t) + M(t)$$

$$M(t) = N(t) - \Lambda(t)$$

$$dN(t) = d\Lambda(t) + dM(t)$$

$$\Rightarrow \frac{dN(t)}{Y(t)} = \frac{d\Lambda(t)}{Y(t)} + \frac{dM(t)}{Y(t)}$$

$$\Rightarrow E\left\{\frac{dN(t)}{Y(t)} \middle| F(t-)\right\} = E\left\{\frac{d\Lambda(t)}{Y(t)} \middle| F(t-)\right\} + E\left\{\frac{dM(t)}{Y(t)} \middle| F(t-)\right\}$$
Let $J(t) = 1_{\{Y(t)>0\}}$

$$\Rightarrow \int_0^t \frac{J(u)dN(u)}{Y(u)} = \int_0^t \frac{J(u)}{Y(u)} Y(t) dH(t) + \int_0^t \frac{J(u)dM(u)}{Y(u)}$$

$$= \int_0^t J(u) dH(u) \equiv H^*(t)$$

17 / 20

 \nearrow Non-parametric estimator of H(t)

$$N(t) = \Lambda(t) + M(t)$$

 $M = N - \Lambda$

$$\int_0^t \frac{J(u)dN(u)}{Y(u)} = \sum_i \frac{J(t_i)}{Y(t_i)} \cdot 1$$
$$= \int_0^t J(u)dH(u) + \int_0^t \frac{J(u)}{Y(u)}dM(u)$$

Martingale Transformation Theorem(1984) R.Gill (JASA) $\int p(t)dM(t) \equiv M^*(t) \text{ is still a martingale process.}$

$$Y = X\beta + \varepsilon$$

$$\frac{1}{n}X'Y = \frac{1}{n}X'X\beta + \frac{1}{n}X'\varepsilon$$

$$\hat{\beta} \approx (X'X)^{-1}X'Y \xrightarrow{pr.} 0$$

♦ Observe that

$$\int_0^t J(u)dH(u) = H(t)1_{\{0 < t < \tau\}} = \text{cumulative hazard}$$

$$\therefore \hat{H}(t) = \int_0^\tau \frac{dN(u)}{Y(u)}$$

$$N(t) = \sum_{i} N_i(t)$$

 $Y(t) = \sum_{i} Y_i(t)$

$$\begin{split} \hat{H}(t) &= 0 \text{ if } t < x_1 \\ &= \frac{1}{9} = \frac{1}{1+1+\dots+1} \quad x_1 \leq t < x_2 \\ &= \frac{1}{9} + \frac{1}{0+1+\dots+1} \quad x_2 \leq t < x_4 \\ &= \frac{1}{9} = \frac{1}{8} + \frac{1}{6} \quad x_4 \leq t \\ &\vdots \end{split}$$

21 / 20

$$\Rightarrow Q: (HW) \operatorname{Var}(\hat{H}(t)) = ?$$

$$\hat{H}_{N-A}(t)$$
, $\exp\{-H(t)\}=S(t)$

So you can estimate S(t) by $\exp\{-\hat{H}_{N-A}(t)\} = \hat{S}(t)$

Arr If you actually estimate $S(\cdot)$ in the previous manner

$$\Rightarrow d\hat{S}(t) = \exp\{-d\hat{H}(t)\} \approx 1 - d\hat{H}(t)$$

(if dH is considered as being "very" small)

For discrete case and by the predict of consecutive conditional probability. (see later for K - M estimator)

$$\begin{split} \prod_{\{t\}} d\hat{s} & (\text{discrete case}) &= \hat{S}_{K-M}(t) \\ &= \prod_{u=0}^t (1 - d\hat{H}(u)) \\ &= \prod_{u=0}^t \{1 - \frac{dN(u)}{Y(u)}\} \\ &\equiv \text{Kaplan-Meier}(1958) \text{ estimator} \\ &\equiv \hat{S}_{K-M}(t) \end{split}$$

(More details)(Fleming and Harringtor, 1991, P96~P97)

$$H(t) = \int_0^t h(u)du = (-1)\int_0^t \frac{dS(u)}{S(u-)}$$

$$S(t) = \int_0^t dS(u) = -\int_0^t S(u-)dH(u)$$

which means $\mathsf{S}(\cdot)$ is uniqualy determined by $H(\cdot)$

 \therefore By plugging in \hat{H} ,

$$\hat{S}(t) = -\int_0^t \hat{S}(u-)d\hat{H}(u) = -\int_0^t \hat{S}(u-) \cdot \frac{dN(u)}{Y(u)}$$

$$\hat{S}(t-)-\hat{S}(t)=(-1)\Delta\hat{S}(t)=\hat{S}(t-)rac{\Delta N(t)}{Y(t)}$$

$$\therefore \hat{S}(t) = \hat{S}(t-) \left\{ 1 - \frac{\Delta N(t)}{Y(t)} \right\}$$

☆ consider all jump points,

$$\hat{S}_{K-M}(t) = \prod_{S < t} \left\{ 1 - \frac{\Delta N(S)}{Y(S)} \right\}$$

$$\sup |F_n(x) - F_0(x)| \stackrel{a.s}{\longrightarrow} 0$$

§ Chapter 4

 T_i may be a failure time or censoring time

We have n observation, $T_1 < T_2 < \cdots < T_n \text{ (ordered)}$

Let $T_1 < T_2 < \cdots < T_n$ be time points where there is exactly one-failure at time $t_i \Rightarrow$

$$P_{r}\{T \geq t_{j}\} = S_{T}(t_{j})$$

$$= P_{r}\{T \geq t_{j} | T \geq t_{j-1}\} \cdot P_{r}\{T \geq t_{j-1}\}$$

$$= \cdots$$

$$= P_{r}\{T \geq t_{j} | T \geq t_{j-1}\} \cdot P_{r}\{T \geq t_{j-1} | T \geq t_{j-2}\} \cdots$$

$$P_{r}\{T \geq t_{2} | T \geq t_{1}\} \cdot P_{r}\{T \geq t_{1} | T \geq t_{0}\}$$

$$P_{r}\{T \geq t_{0}\}$$

or

$$1 \cdot (1 - \frac{d_1}{Y_1}) \cdot (1 - \frac{d_2}{Y_2}) \cdot \dots \cdot (1 - \frac{d_j}{Y_j})$$

$$d_j$$
 = $\#$ of failures occured at t_j (if d_j \geq 2 \Rightarrow ties)

$$Y_j = \#$$
 of at-risk at $t_j = \sum_{i=1}^n Y_i(t_j) = \#R(t_j)$

☆ Therefore

$$\hat{S}_{KM}(t_j) = \prod_{i=1}^{j} \left\{ 1 - \frac{d_i}{Y_i} \right\}$$

$$= \prod_{s < t} \left\{ 1 - \frac{dN(S)}{Y(S)} \right\} \text{ in terms of " counting process "}$$

$$\begin{cases} N(t) = \sum_{i=1}^{n} N_i(t) \\ Y(t) = \sum Y_i(t) \end{cases}$$

$$\hat{S}_{KM}(t) = \prod_{\{i: t_i \leqslant t\}} \left\{ 1 - \frac{d_i}{Y_i} \right\} = \prod_{\{i: t_i \leqslant t\}} \left\{ 1 - \frac{Y_i - d_i}{Y_i} \right\}$$

$$\therefore \log \hat{S}_{KM} = \sum \log \hat{P}_i \quad \text{where } \hat{P}_i = \frac{Y_i - d_i}{Y_i}$$

$$Y_i \hat{P}_i \sim \text{Bin}(Y_i, P_i)$$

$$\mathsf{Var}(\log \hat{P}_i) \overset{\mathsf{Taylor}}{\approx} \overset{\mathsf{exp.}}{\approx} \frac{1}{P_i^2} \mathsf{Var}(\hat{P}_i) = \frac{1}{P_i^2} \frac{P_i(1-P_i)}{Y_i} = \frac{1-P_i}{Y_i P_i}$$

$$\left(* \log \hat{P}_i \simeq \log P_i + (\hat{P}_i - P_i) \frac{1}{P_i} + \text{remainder}\right)$$

⇒ assume
$$\left\{ \log \hat{P}_i \right\}_{i=1}^n$$
 are "mutually indep"

$$\Rightarrow \operatorname{Var}\{\log \hat{S}_{KM}\} = \sum \frac{1 - P_i}{Y_i P_i}$$

$$\approx \sum \frac{1 - \hat{P}_i}{Y_i \hat{P}_i}$$

$$= \sum \frac{\frac{d_i}{Y_i}}{Y_i \frac{Y_i - d_i}{Y_i}}$$

$$= \sum \frac{d_i}{Y_i (Y_i - d_i)}$$

- > This is called Greenwood's formula derived from "actuarial method".
- ightharpoonup Again by $\delta-$ method,

$$extstyle extstyle ext$$

> The "independence" assumption. Is a problem!

(sol):

$$\log \hat{S} \approx \log S + (\hat{S} - S) \frac{1}{S}$$

$$\Rightarrow \operatorname{Var}(\log \hat{S}) = \frac{1}{S^2} \operatorname{Var}(\hat{S})$$

$$\Rightarrow \operatorname{Var}(\hat{S}) = S^2 \operatorname{Var}(\log \hat{S})$$

 $$\Rightarrow$$ 95% CI of S(t), at every t

$$\begin{split} g\left(\hat{S}(t)\right) &= g\left(S(t)\right) + \left(\hat{S}(t) - S(t)\right)g'\left(S(t)\right) + \\ &\quad \frac{1}{2}\big(\hat{S}(t) - S(t)\big)^2g''\left(S(t)\right) + \cdots \\ \operatorname{Var}\!\left(g(\hat{S})\right) &\approx \left(g'\big(S(t)\big)\right)^2 \operatorname{Var}\!\left(\hat{S}(t)\right) \end{split}$$

In general, we can meet the following large-sample property:

$$\frac{g(\hat{S}(t)) - g(S(t))}{\sqrt{\hat{\mathsf{Var}}g(\hat{S}(t))}} = \pm Z_{\alpha/2}$$

Arr The 100(1- α)% CI of g(S(t)), at t is

$$g(\hat{S}(t)) \pm Z_{lpha/2} g'(S(t)) \sqrt{\mathsf{Var} \hat{S}(t)}$$

Now, take $g(x) = \log\{-\log x\}$ 0 < x < 1

i.e. $g(\cdot)$ is the so-called complementary $\log - \log \operatorname{link}$

Therefore
$$g'(x) = \frac{1}{-\log x}(-1)\frac{1}{x} = \frac{1}{x\log x}$$

So

$$\log\big\{-\log\hat{S}(t)\big\}\pm Z_{\alpha/2}\frac{1}{\widehat{S}(t)\log\hat{S}(t)}\sqrt{\mathsf{Var}\hat{S}(t)}$$

Let
$$\frac{\sqrt{\operatorname{Var}\hat{S}}}{\hat{S}} \equiv \sigma_{\hat{S}}$$
 or $\frac{\operatorname{Var}\hat{S}}{\hat{S}^2} \equiv \sigma_{\hat{S}}^2$
Further, $\log S(t) = -H(t)$ or $\log \hat{S}(t) = -\hat{H}(t)$

$$\frac{Z_{\alpha/2}\sigma_{\hat{S}}}{\log \hat{S}} \equiv \log \hat{\theta}$$

$$\log\left(\hat{H}(t)\right) \pm \log(\hat{\theta}) = -\hat{\theta}\log\hat{S}, \ \frac{-1}{\hat{\theta}}\log\hat{S}$$

$$ightharpoonup$$
 CI of $H(t)$: $\exp\{\log \hat{H} \pm \log \hat{\theta}\} = \hat{H}\hat{\theta}, \ \hat{H}\frac{1}{\hat{\theta}}$

$$\exp\{-H\} = \left(\exp\{-\hat{H}\frac{1}{\hat{\theta}}\}, \exp\{-\hat{H}\hat{\theta}\}\right) = \left(\left(\hat{S}(t)\right)^{\frac{1}{\hat{\theta}}}, \left(\hat{S}(t)\right)^{\hat{\theta}}\right)$$

★ Two-sample comparison Test $H_0: \mu_1 = \mu_2 \ T - test$

 $H_0: m_1 = m_2$?

 $m_1=\inf\{x:F(x)\geqslant 1/2\}$

 $m_2=\inf\{x:\,G(x)\geqslant 1/2\}$

$$Arr H_0: S_1(t) = S_2(t) \ \forall t \ (\text{or } h_1(t) = h_2(t))$$

Group1: treatment Group2: control

$$P_r\{\text{the death }\in G1|\text{one death at time }t_1\}=\frac{n_1}{n_1+m_1}$$

$$P_r\{\text{the death }\in G2|\text{one death at time }t_1\}=\frac{m_1}{n_1+m_1}$$

☆ a is the random variable (fixed marginal total)

$$a = 1, \ P = \frac{n1}{n1+m1}$$

 $a = 0, \ p = \frac{m1}{n1+m1}$
 $E(a) = p, \ Var(a) = p(1-p)$

	death	survival	
G1	а		n1
G2	1-a		m1
	1	$N_1 - 1$	

$$\triangle$$
 Ex: $n1 = 5$, $m1 = 5$

at t_1	death	survival		at t_2	death	survival	
G1	1	4	5	G1	0	3	3
G2	0	5	5	G2	1	4	5
	1	9	10		1	7	8

$$n_j = \sum_{k=1}^{n_1} Y_{1k}(t_j), \ m_j = \sum_{k=1}^{m_1} Y_{2k}(t_j)$$
 $P_r\{a_2 = 1 | \text{one death at } t_2\} = \frac{n_2}{N_2}$
 $P_r\{a_2 = 0 | \text{one death at } t_2\} = \frac{m_2}{N_2}$

\star k-number 2 \times 2 table

a_1	b_1	n_1	
<i>c</i> ₁	d_1	m_1	
s_1	t_1	N_1	

$$\begin{array}{c|cccc}
a_k & b_k & n_k \\
c_k & d_k & m_k \\
\hline
s_k & t_k & N_k
\end{array}$$

$$\hat{\varphi}_1$$
 =odds ratio of table $1=\frac{a_1d_1}{b_1c_1}$. . . $\hat{\varphi}_k=\frac{a_kd_k}{b_kc_k}$ Sum:

$$\frac{\sum_{i=1}^k a_i - \mathsf{E}(\sum_{i=1}^k a_i)}{\sqrt{\mathsf{Var}(\sum_{i=1}^k a_i)}} \sim N(0,1)$$

 $\not = H_0: \varphi_1 = \cdots = \varphi_k \equiv \varphi_0$ (common odds ratio homogeneity)

 $\hat{\varphi}_0 = ?$ estimation!

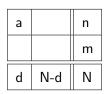
$$\Rightarrow a_k = 1$$
,

$$P_r\{a_k=1|\text{one death at }t_k\}=rac{n_k}{n_k+m_k}$$

$$\mathsf{E}(a_k) = \frac{n_k}{n_k + m_k} \text{ if } h_1(t) = h_2(t)$$

$$\left(\frac{\sum_{i=1}^k a_i + \sum_{i=1}^k (\frac{n_i}{n_i + m_i})}{\sqrt{\sum_{i=1}^k (N_i \frac{n_i}{n_i + m_i} \frac{m_i}{n_i + m_i})}}\right)^2 \overset{H_0}{\sim} \mathcal{X}_1^2$$

☆ Note:



$$\mathsf{E}(a) = N \frac{n}{N} \frac{d}{N} = \frac{nd}{N} \stackrel{d=1}{=} \frac{n}{N}$$

$$Var(a) = \frac{nmd(N-d)}{N^2(N-1)} \stackrel{d=1}{=} \frac{nm}{N^2}$$