Chapter 7 Finite difference methods for PDE

§7.0 Preliminaries :

① <u>Theorem 7.1 : (Gerschgoren's Theorem)</u>

Let A be an $n \times n$ matrix. For each $j = 1, \dots, n$, let

$$C_j = \left\{ z \mid |z - A_{jj}| \le \sum_{k \neq j} |A_{jk}| \right\}$$

Then all the eigenvalues of A are in $\bigcup_{i=1}^{j} C_{j}$.

<u>Proof</u>: Let $Ax = \lambda x$ where $x = (x_1, \dots, n)$, and $|x_j| \ge |x_k|$ for all $k = 1, \dots, n$. Then

$$\sum_{k=1}^{\infty} A_{jk} x_k = \lambda x_j \implies (A_{jj} - \lambda) x_j = \sum_{k \neq j} A_{jk} x_k$$
$$\implies |A_{jj} - \lambda| |x_j| \le \sum_{k \neq j} |A_{jk}| |x_k| \le |x_j| \sum_{k \neq j} |A_{jk}|$$
$$\implies |A_{jj} - \lambda| \le \sum_{k \neq j} |A_{jk}| \quad \text{since} \quad |x_j| \ne 0$$
$$\implies \lambda \in C_j.$$

Problem 87 : Show that if \mathscr{D} is a connected component of $\bigcup_{j} C_{j}$ consisting of exactly in m circles, then \mathscr{D} contains exactly m eigenvalues.

② Review on matrix norms and linear algebra

Definition 7.2: If $x = (x_1, \dots, x_n) \in \mathbb{C}^n$, define $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ and $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$.

Exercise 88 : $||x||_{\infty} = \lim_{p \to \infty} ||x||_p$.

Property 7.3: $||x||_p$ is a norm. i.e. (a) $||x||_p \ge 0$ and $||x||_p = 0$ if and only if x = 0. (b) $||\lambda x||_p = |\lambda| ||x||_p$ for all $\lambda \in \mathbb{R}$ or \mathbb{C} . (c) $||x + y||_p = ||x||_p + ||y||_p$ **Property 7.4**: Any norm is Lipshitz continuous. More precisely, $|||x|| - ||y||| \le ||x - y||$. **Proof**: $||x|| = ||y + (x - y)|| \le ||y|| + ||x - y|| \Longrightarrow ||x|| - ||y|| \le ||x - y||$. Similarly, $||y|| - ||x|| \le ||x - y||$. Hence, $|||x|| - ||y||| \le ||x - y||$

Definition 7.5: et A be a $n \times n$ complex matrix, define an **operator norm** for A by

$$||A||_p = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p} = \sup_{||y||_p = 1} ||Ay||_p$$

Property 7.6: $||A||_p$ is a norm (an operator norm), for $1 \le p \le \infty$. i.e. (a) $||A||_p \ge 0$ and $||A||_p = 0$ if and only if A = 0. (b) $\|\lambda A\|_p = |\lambda| \|A\|_p$, for $\lambda \in \mathbb{C}$. (c) $||A + B||_p \le ||A||_p + ||B||_p$ for any 2 $n \times n$ matrice A, B... Thus, $||Ax||_p \le ||A||_p ||x||_p$, for $1 \le p \le \infty$. **Exercise 90:** Let $\mathcal{F} = \{ K \mid ||Ay||_p \le K ||y||_p \}$. Then $||A||_p = \inf_{K \in \mathcal{T}} K$. **<u>Property 7.7</u>**: $||AB||_p \leq ||A||_p ||B||_p$ for all $n \times n$ matrices A, B. **<u>Proof</u>**: $||ABy||_p = ||A(By)||_p \le ||A||_p ||By||_p \le ||A||_p ||B||_p ||y||_p$. $\sup_{\|y\|_p=1} \frac{\|ABy\|_p}{\|y\|_p} \le \|A\|_p \|B\|_p.$ · · . **Property 7.8 :** $\begin{bmatrix} d_1 & 0 & \cdots & \cdots \end{bmatrix}$

(a) If
$$D = \begin{bmatrix} 0 & \ddots & \cdots & 0 \\ \vdots & & \ddots & 0 \\ 0 & & \cdots & d_n \end{bmatrix} = \operatorname{diag}(d_1, \cdots, d_n)$$
 then $\|D\|_p = \max_i |d_i|$.
(b) $\|A\|_1 = \max_k \sum_j |A_{jk}|$.

(c)
$$||A||_{\infty} = \max_{j} \sum_{k} |A_{jk}|$$

How about $||A||_2$?

<u>Definition 7.9</u> : Let A be a $n \times n$ matrix. Set

 $\sigma(A)$ = the set of eigenvalues of A

and

$$\rho(A) = \max_{\lambda \in \sigma(A)} |\lambda|.$$

Property 7.10 : $||A||_p \ge \rho(A)$ for all $p \in [1, \infty]$. **<u>Proof</u>**: If $Ax = \lambda x$ and $||x||_p = 1$ then $|\lambda| = ||Ax||_p \le ||A||_p$. $\rho(A) \leq ||A||_p$. · .

Property 7.11: If A is normal (i.e. $AA^* = A^*A$) then $||A||_2 = \rho(A)$. In any case, $||A||_2 = \rho (A^*A)^{1/2} \le ||A^*A||_2^{1/2} \le ||A^*||_2 ||A||_2$.

Exercise 91 : Find sharp constants C_1 and C_2 , depending on n such that $C_1 \|x\|_{\infty} \le \|x\|_2 \le C_2 \|x\|_{\infty}$ **Definition** 7.12 : The *o* , *O* notations: $c \in [-\infty, \infty]$

(a) f(x) = o(g(x)) as $x \to c$ if $\lim_{x \to c} \frac{f(x)}{g(x)} = 0$,.

(b) f(x) = O(g(x)) as $x \to c$ if \exists a constant K such that $|f(x)| \le K g(x)$, for all x near c. (note that here c can be replaced by c^{\pm})

Theorem 7.12.A : Taylor's formula with Remainder

Let f be a function whose (n + 1)st derivative $f^{(n+1)}(x)$ exists for each x in an open interval I containing a. Then, for each x in I,

$$f(x) = f(a) + f'(a)(x-1) + \frac{f''}{2!}(x-a)^2 \cdots + \frac{f^{(n)}}{n!}(x-a)^n + R_n(x)$$

where the remainder (or error) $R_n(x)$ is given by the formula

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

and c is some point between x and a.

<u>Theorem 7.12.B</u>: Taylor's Theorem

Let f be a function with derivatives of all orders in some interval (a - r, a + r). The Taylor series

$$f(x) = f(a) + f'(a)(x-1) + \frac{f''(a)}{2!}(x-a)^2 \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots$$

represents the function f on the interval (a - r, a + r) if and only if

$$\lim_{n\to\infty} R_n(x) = 0$$

where the remainder (or error) $R_n(x)$ is given by the formula

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

and c is some point in the interval (a - r, a + r).

<u>**Theorem 7.12.C**</u>: Property on operator normed

Let $(X, \|\cdot\|)$ be a complete normed space (Banach space: every Cauchy sequence is convergent.) and $T: X \to X$ an operator with the operator norm $\|T\|_x < 1$. Define $T^0 = I$, $T^2(x) = T(T(x))$ and $T^n(x) = T(T^{n-1}(x))$. Then

(a)
$$S(x) = \lim_{n \to \infty} \sum_{k=0}^{n} T^{k}(x)$$
 is well-defined with $||S||_{x} = (1 - ||T||_{x})^{-1}$.

(b) I - T is invertible.

(c)
$$(I - T)^{-1} = \sum_{k=0}^{\infty} T^k(n).$$

(d)
$$\left\| (I-T)^{-1} \right\|_{X} = (1 - \|T\|_{X})^{-1}.$$