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Autoregressive Dependence Structures
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Abstract: The t linear mixed model with AR(p) dependence structure is pro-
posed for the analysis of longitudinal data in which the underlying repeated
measures contain thick tails and serial correlations simultaneously. For pa-
rameter estimation, I develop a hybrid maximization scheme that combines
the stability of the Expectation Conditional Maximization Either (ECME)
algorithm with the rapid convergence property of the scoring method. Em-
pirical Bayes estimation of random effects and prediction of future values for
the proposed model are also considered. The proposed methodologies are
applied to a real example from a tumor growth study on twenty-two mice.
Numerical comparisons indicate that the proposed model outperforms the
normal model from both inferential and predictive perspectives.
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1. Introduction and Historical Perspective

In most theoretical research methods of linear mixed models as well as their
applications, the error terms are routinely assumed to be normally distributed
for mathematical convenience. However, such a normality assumption could be
violated and in turn may affect the estimates of regression coefficients and vari-
ance components when the experimental data involve thicker than normal tails
or atypical observations. Over the past three decades, the multivariate t distri-
bution has been recognized as a useful generalization of the normal distribution
for robustifying linear regression models (Zellner, 1976; Lange et al., 1989) and
linear mixed models (Pinheiroit et al., 2001; Lin and Lee, 2006; Lin and Lee,
2007).

A n-dimensional random vector Y is said to follow a multivariate t distribu-
tion with location vector µ, scaling covariance matrix Σ and degrees-of-freedom
ν, denoted by Y ∼ tn(µ,Σ, ν), if its density function is given by

f(Y ) =
Γ
(
(ν + n)/2

)
Γ(ν/2)(πν)n/2

|Σ|−1/2

(
1 +

(Y − µ)TΣ−1(Y − µ)
ν

)−(ν+n)/2

.
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For a comprehensive overview of the fundamental theories and characterizations
of the multivariate t distribution along with its recent advances and applications,
the interested reader can refer to the monograph by Kotz and Nadarajah (2004).

The t linear mixed model can be written as

Y i = Xiβ + Zibi + εi, (1.1)

along with the assumption of[
bi

εi

]
∼ tni+m2

( [
0
0

]
, σ2

[
Γ 0
0 Ci

]
, ν

)
, (1.2)

where Y i is an ni-dimensional vector made on subject i (i = 1, . . . , N), Xi and
Zi are known full-rank covariate matrices of dimensions ni × m1 and ni × m2,
respectively, β is an m1×1 vector of fixed effects used to describe the population
mean, bi is an m2×1 vector of unobservable random effects, εi is an ni×1 vector
of errors.

As pointed out by Pinheiro et al. (2001), it is crucial to emphasize that bi

and εi are uncorrelated but dependent. From (1.2), there exists a latent variable
τi ∼ Gamma(ν/2, ν/2), where Gamma(α, β) stands for the gamma distribution
with mean α/β, such that bi | τi and εi | τi are independent. Moreover, Γ is an
m2 × m2 unstructured positive definite matrix. Note that the scaling covariance
matrices of bi and εi share with the same scaling factor σ2 for computational
convenience (Lindstrom and Bates, 1988). The structured AR(p) dependence
matrix, Ci = Ci(φ) = [ρ|r−s|(φ)], r, s = 1, . . . , ni, is considered for within-
subject errors, where ρk’s are implicit functions of the autoregressive parameters
φ = (φ1, . . . , φp) and satisfy the Yule-Walker equation (Box et al., 1994), i.e.,

ρk = φ1ρk−1 + · · · + φpρk−p, ρ0 = 1, (k = 0, . . . , ni − 1).

For the pure AR model, the admissible values of φ are restricted in a p-dimensional
hypercube Cp. To enforce uniqueness of the model, the roots of 1−φ1B−φ2B

2−
· · · − φpB

p = 0 must lie outside the unit circle, say φ ∈ Cp.
It follows from the essential property of the multivariate t distribution that if

Y i ∼ tni(µ,Σ, ν), it can be hierarchically expressed as Y i|τi ∼ Nni (µ,Σ/τi) and
τi ∼ Gamma(ν/2, ν/2). Under the complete data framework, the random effects
bi’s and the unknown precision scales τi’s can be viewed as latent variables. A
three-level specification of model (1.1) is represented by

Y i | bi, τi ∼ Nni

(
Xiβ + Zibi,

σ2

τi
Ci(φ)

)
,

bi | τi ∼ Nm2

(
0,

σ2

τi
Γ

)
, τi ∼ Gamma(ν/2, ν/2). (1.3)
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Pinheiro et al. (2001) provided some efficient EM-type algorithms for max-
imum likelihood (ML) estimation in t linear mixed models with heteroscedastic
errors. Since longitudinal data are occasionally collected over time, observations
within each subject tend to be autocorrelated. To account for the happened se-
rial correlation, I exploit a stationary AR(p) dependence structure for the within-
subject errors. Notice that the pure AR model can be extended to a richer ARMA
family (Lin and Lee, 2003; Lee et al., 2005). Nevertheless, it is appropriate and
relatively simple to fit high-order AR models instead of using complicated ARMA
models due to the fact that longitudinal data are often collections of short time
series.

In (1.2), if one replaces ν with ∞ and Ci with Ini , then model (1.1) re-
duces to the normal linear mixed model (Hartely and Rao, 1967). Laird and
Ware (1982) discussed in detail how the EM algorithm (Dempster et al., 1977)
can be applied to estimate the parameters of this model. To tackle the prob-
lem of slow convergence with EM, Schafer (1998) described a hybrid procedure
which combines the stability of EM with the rapid convergence of Fisher scoring
method. The improved procedures developed in Schafer (1998) are now bun-
dled in the R package lmm, which can be freely downloaded from the web site
(http://cran.r-project.org/).

In the next section, computational aspects of ML estimation are described.
The estimation of random effects and prediction of future values are discussed in
Section 3. The proposed methodologies are illustrated in Section 4 with a real
data set and a brief discussion is given in the final section.

2. Computational Aspects

2.1 Likelihood inference

It follows from (1.3) that the marginal density of Y i is

f(Y i) =
Γ(ν+ni

2 ) | Λi |−1/2

Γ(ν
2 )(πνσ2)ni/2

(
1 +

(Y i − Xiβ)TΛ−1
i (Y i − Xiβ)

νσ2

)−(ν+ni)/2

,

(2.1)
where Λi = Λi(Γ, φ) = ZiΓZT

i + Ci and Ci = Ci(φ). This implies that
Y i ∼ tni(Xiβ, σ2Λi, ν).

For notational simplicity, I denote ei = Y i − Xiβ and ∆i = ∆i(β,Γ, φ) =
eT

i Λ−1
i ei. Letting α = (β, σ2, ν,Γ, φ) be the model parameters, the log-likelihood
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function for Y = (Y 1, . . . , Y N ), omitting the constant term, is

`(α | Y ) =
N∑

i=1

(
log Γ

(ν + ni

2

)
− log Γ

(ν

2

))
− n

2
log(νσ2)

−1
2

N∑
i=1

log | Λi | −
1
2

N∑
i=1

(ν + ni) log
(

1 +
∆i

σ2ν

)
, (2.2)

where n =
∑N

i=1 ni is the total number of observations from all subjects in the
study.

To ensure the nonnegative definiteness of Γ in the estimating procedure, I
reparameterize Γ = UTU by the Cholesky decomposition, where U is an upper
triangular matrix. In order to ensure uniqueness of Γ, I restrict the diagonal
elements of U to be positive. Let ω be a g×1 vector that contains m2(m2 +1)/2
distinct entries in U and the autoregressive coefficients in φ. Hence, g = (m2

2 +
m2 + 2p)/2 and α = (β, σ2, ν, ω). The following proposition is useful in the
derivation of the information matrix.

Proposition 1. For model (1.1), the following holds:

(a) σ−2∆i ∼ niF(ni, ν).

(b) ν/(ν + σ−2∆i) ∼ Beta(ν/2, ni/2).

(c) E

(
∆i

(σ2ν + ∆i)
2

)
=

ni

σ2(ν + ni)(ν + ni + 2)
.

The proof follows directly from the essential properties of the multivariate t
distribution (see, e.g., Nadarajah and Kotz, 2005) and hence is omitted. ¤

2.2 The Fisher-scoring algorithm

In light of (2.2), there is no closed-form solution available for the ML esti-
mates. Instead, some certain numerical techniques such as the scoring method
can be used to find optimal parameter estimates. Explicit expressions of the
score vector sα and the Fisher information matrix Jαα required for the devel-
oped Fisher scoring algorithm are sketched in Appendix A.

Let θ = (σ2, ν, ω) denote the set of parameters excluding the fixed effects β,
then α = (β, θ), sα = (sα, sθ) and

Jαα =

[
Jββ Jβθ
JT
βθ Jθθ

]
, (2.3)
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which is a block partitioned matrix since Jβθ is an m2 × (g + 2) zero matrix.

The update of the current estimate θ̂
(k)

at the kth iteration is obtained through
the following recursive equation

θ̂
(k+1)

= θ̂
(k)

+ Ĵ(k)−1

θθ
ŝ(k)

θ
, (2.4)

where Ĵ(k)

θθ
and ŝ(k)

θ
are Jθθ and sθ evaluated at β̂

(k)
and θ̂

(k)
, respectively.

Meanwhile, the update of the current estimate β̂
(k)

is obtained by a generalized-
least-squares step as follows:

β̂
(k+1)

=
( N∑

i=1

ŵ
(k+1)
i XT

i Λ̂
(k+1)−1

i Xi

)−1
N∑

i=1

ŵ
(k+1)
i XT

i Λ̂
(k+1)−1

i Y i, (2.5)

where ŵ
(k+1)
i = (ν̂(k+1) + ni)/(ν̂(k+1) + ∆i(β̂

(k)
, Γ̂

(k+1)
, φ̂

(k+1)
)).

The ML estimates of β and θ are obtained by iterating (2.4) and (2.5) until
‖α̂(k+1) − α̂(k)‖/‖α̂(k)‖ converges according to a default tolerance, say 10−8.

In order to facilitate the estimating procedure and achieve the objective of
ensuring admissibility of φ, we perform a reparameterization on φ as in Barndorff-
Nielsen and Schou (1973):

φ
(k)
k = πk, φ

(k)
j = φ

(k−1)
j − πkφ

(k−1)
k−j , j = 1, 2, . . . , k − 1, (2.6)

where φ
(p)
j = φj = φ

(j)
j − φ

(j+1)
j+1 φ

(j)
1 − φ

(j+2)
j+2 φ

(j+1)
2 − · · · − φ

(p)
p φ

(p−1)
p−j , for j =

1, . . . , p − 1.
Notice that (2.6) is a one-to-one and onto transformation which reparam-

eterizes φ = (φ1, . . . , φp) ∈ Cp in terms of the partial autocorrelations π =
(π1, . . . , πp) ∈ Rp, where R = [−1, 1].

In the scoring procedure, one needs to evaluate the inverse of Ci(φ), denoted
by C−1

i (φ), and its differentiation with respect to φk for k = 1, . . . , p. How-
ever, it is very difficult to obtain ∂Ci(φ)/∂φk directly. If the inverse of Ci(φ)
can be explicitly expressed, its differentiation can be obtained by the formula
∂Ci(φ)/∂φk = −Ci(φ)

[
∂C−1

i (φ)/∂φk

]
Ci(φ). To get the inverse as well as the

differentiation of the AR(p) autocovariance matrix in analytical forms, I need the
following proposition:

Proposition 2. The inverse of the autocovariance matrix for the AR(p) process
is

C−1
i (φ) = σ−2(LT

φ Lφ − HφHT
φ ), ni ≥ p,
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where Hφ and Lφ are ni×p and ni×ni matrices, respectively, and [Hφ, Lφ] = [ηij ]
with

ηij =


−φk, j = i + p − k, k = 1, 2, . . . , p,

1, j = i + p,
0, otherwise.

Proof. See Lin and Ho (2008). ¤
By Proposition 2, the derivative of C−1

i with respect to φk is

∂C−1
i (φ)
∂φk

=
∂

∂φk
(LT

φ Lφ − HφHT
φ )

=
(

∂Lφ

∂φk

)T

Lφ + LT
φ

(
∂Lφ

∂φk

)
−

(
∂Hφ

∂φk

)
HT

φ − Hφ

(
∂Hφ

∂φk

)T

, (2.7)

where [
∂Hφ

∂φk
|

∂Lφ

∂φk

]
=

∂

∂φk

[
Hφ | Lφ

]
=

[
bij(k)

]
,

with

bij(k) =
{

−1, if j = i + p − k;
0, otherwise.

, k = 1, . . . , p.

When data arise from the t model, one can choose the initial values by fitting
a normal counterpart with a relatively large starting value for the degrees of free-
dom, e.g., ν̂(0) = 100. However, they may be far from optimum and subsequently
cause divergence in the scoring procedure. To prevent this obstacle, it is suggested
that the user can run the ECME algorithm (described in the next subsection)
with moderate iterations to seek ideal starting values before implementing the
scoring procedure.

2.3 An efficient ECME algorithm for ML estimation

The EM algorithm (Dempster et al., 1977) is a popular iterative algorithm
for ML estimation in models with incomplete data and has several appealing
features such as stability of monotone convergence and simplicity of implemen-
tation. However, EM loses some of its attraction when its M-step becomes com-
putationally intractable. To cope with this problem, Meng and Rubin (1993)
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introduced the ECM algorithm, which is itself an extension of the EM algorithm,
that replaces the M-step of EM with a sequence of computationally simpler con-
ditional maximization (CM) steps. The ECME algorithm (Liu and Rubin, 1994),
a further generalization of EM, extends ECM with the CM-steps by maximizing
either the expected complete data log-likelihood function or the correspondingly
constrained actual log-likelihood function, called the ‘CML-step’. The main ad-
vantage of the ECME algorithm is that it not only preserves the nice features
of EM and ECM, but also converges substantially faster than EM and ECM,
as demonstrated by Liu and Rubin (1995) for ML estimation of multivariate t
distribution with unknown degrees of freedom.

Sometimes, the CML-step in ECME might need a high-dimensional search
when many parameters are involved in the constrained log-likelihood function.
To circumvent such a difficulty, the CML-step can be implemented by incorpo-
rating the Fisher-scoring algorithm with step-halving to ensure increasing the
log-likelihood. In practice, it is not necessary to iterate until the scoring pro-
cedure converges. Instead, a few scoring steps are enough provided that the
constrained log-likelihood function increases at each iteration.

I next present a modified version of the ECME algorithm which is compu-
tationally feasible and delicate. It follows from (1.3) that, conditional on the
missing weight τi, the joint distribution of Y i and bi is

[
Y i

bi

] ∣∣∣∣∣ τi ∼ Nni+m2

( [
Xiβ
0

]
, σ2

τi

[
ZiΓZT

i + Ci(φ) ZiΓ
ΓZT

i Γ

] )
,

τi ∼ Gamma
(ν

2
,
ν

2

)
. (2.8)

From (2.8), it is not difficult to verify that

E(bi | Y i) = E(E(bi | Y i, τi)) = ΓZT
i Λ−1

i (Y i − Xiβ) (2.9)

and

cov(bi | Y i, τi) =
σ2

τi
(ZT

i C−1
i Zi + Γ−1)−1. (2.10)

Let b = (b1, . . . , bN ) and τ = (τ1, . . . , τN ). In the ECME algorithm, b and
τ are treated as missing values. Accordingly, the complete-data log-likelihood
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function of α = (β, σ2,Γ, φ, ν), omitting the constant term, is given by

`c(α|Y ) = −n + Nm2

2
log(σ2) − 1

2

N∑
i=1

log |Ci| −
N

2
log |Γ|

− 1
2σ2

tr
(
Γ−1

N∑
i=1

τibib
T
i

)

− 1
2σ2

N∑
i=1

tr
(
C−1

i τi(Y i − Xiβ − Zibi)(Y i − Xiβ − Zibi)T
)

+N

(
ν

2
log

(ν

2

)
− log Γ

(ν

2

))
+

ν

2

N∑
i=1

(
log(τi) − τi

)
. (2.11)

Based on the property of the multivariate normal distribution concerning its
conjugacy for the prior distributions of bi and τi, applying Bayes’ rule yields the
following posterior distributions

bi | Y i, τi ∼ Nm2

(
ΓZT

i Λ−1
i (Y i − Xiβ),

σ2

τi
(ZT

i C−1
i Zi + Γ−1)−1

)
(2.12)

τi | Y i ∼ Gamma
(

ν + ni

2
,
ν + σ−2∆i

2

)
. (2.13)

Let α̂(k) be the estimate of α at the kth iteration. At the (k + 1)st iteration,
it needs to calculate the so-called Q-function, i.e., Q(α | α̂(k)) = E

(
`c(α|Y ) |

Y , α̂(k)
)
, which is the conditional expectation of (2.11) given Y and α̂(k). It

can be observed from (2.11) that the conditional expectations required for the
calculation of the Q-function are E

(
τi | Y i, α̂

(k)
)
, E

(
log τi | Y i, α̂

(k)
)
, E

(
τibi |

Y i, α̂
(k)

)
and E

(
τibib

T
i | Y i, α̂

(k)
)
.

Proposition 3. Taking the conditional expectation of the complete-data log-
likelihood (2.11) with respect to the missing data b and τ given the observed
data Y at its current estimate α̂(k), we have

Q(α | α̂(k)) = −(n + Nm2)
2

log(σ2) − 1
2σ2

N∑
i=1

tr
(
C−1

i Ψ̂
(k)
1i (β)

)
− 1

2

N∑
i=1

log | Ci |

−N

2
log | Γ | − 1

2σ2
tr

(
Γ−1

N∑
i=1

Ψ̂
(k)
2i

)
+ N

(
ν

2
log

(ν

2

)
− log Γ

(ν

2

) )

+
ν

2

N∑
i=1

(
κ̂

(k)
i − τ̂

(k)
i

)
, (2.14)
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where

τ̂i
(k) = E

(
τi | Y i, α̂

(k)
)

=
ν̂(k) + ni

ν̂(k) + σ̂−2(k)∆̂(k)
, (2.15)

κ̂
(k)
i = E

(
log τi | Y i, α̂

(k)
)

= DG

(
ν̂(k) + ni

2

)
− log

(
ν̂(k) + σ̂−2(k)

∆̂(k)

2

)
, (2.16)

Ψ̂
(k)
1i (β) = E

(
τi(Y i − Xiβ − Zibi)(Y i − Xiβ − Zibi)T | Y i, α̂(k)

)
= τ̂i

(k)
(
Y i − Xiβ − Zib̂

(k)

i

)(
Y i − Xiβ − Zib̂

(k)

i

)T

+σ̂2(k)Zi

(
ZT

i Ĉ
(k)−1

i Zi + Γ̂
(k)−1)−1

ZT
i , (2.17)

Ψ̂
(k)
2i = E(τibib

T
i | Y i, α̂(k))

= τ̂
(k)
i b̂

(k)

i b̂
(k)T

i + σ̂2
(
ZT

i Ĉ
(k)−1

i Zi + Γ̂
(k)−1)−1

, (2.18)

with b̂
(k)

i = E
(
bi | Y i, α̂

(k)
)

= Γ̂
(k)

ZT
i Λ̂

(k)−1

i (Y i − Xiβ̂
(k)

) and ∆̂(k)
i being

∆i(β,Γ,φ) evaluated at β̂
(k)

, Γ̂
(k)

and φ̂
(k)

.

Proof: See Appendix B. ¤
Applying Proposition 3 leads to the following ECME algorithm:

E-step: Given α = α̂(k), impute τ̂
(k)
i , κ̂

(k)
i , Ψ̂

(k)
1i (β) and Ψ̂

(k)
2i for i = 1, · · · , N

by using Eqs (2.15)-(2.18).
CM-steps:

CM-step 1: Update β̂
(k)

by

β̂
(k+1)

=
( N∑

i=1

τ̂
(k)
i XT

i Ĉ
(k)−1

i Xi

)−1
N∑

i=1

τ̂
(k)
i XT

i Ĉ
(k)−1

i (Ŷ
(k)
i − Zib̂

(k)

i ), (2.19)

which is obtained by maximizing (2.14) over β given φ = φ̂
(k)

.

CM-step 2: Fix β = β̂
(k+1)

, Γ = Γ̂
(k)

and φ = φ̂
(k)

, and update σ̂2(k)
by

maximizing (2.14) over σ2, which gives

σ̂2(k+1)
=

1
n + Nm2

N∑
i=1

(
tr

(
Ĉ

(k)−1

i Ψ̂
(k)
1i (β̂

(k+1)
)
)

+ tr
(
Γ̂

(k)−1

Ψ̂
(k)
2i

))
(2.20)

CM-step 3: Update Γ̂
(k)

by

Γ̂
(k+1)

=
1

Nσ̂2(k+1)

N∑
i=1

Ψ̂
(k)
2i , (2.21)
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which is obtained by maximizing (2.14) over Γ given σ2 = σ̂2(k+1)
.

CML-step 4: Let η = (ν, φ) and update η̂(k+1) = (ν̂(k+1), φ̂
(k+1)

) by max-
imizing the constrained log-likelihood (2.2) using the most current estimates.
Therefore, I have

h(η) =
N∑

i=1

(
log Γ

(ν + ni

2

)
− log Γ

(ν

2

))
− n

2
log(ν) − 1

2

N∑
i=1

log | Λi(Γ̂
(k+1)

, φ) |

−1
2

N∑
i=1

(ν + ni) log

(
1 +

∆i(β̂
(k+1)

, Γ̂
(k+1)

, φ)
νσ̂2(k+1)

)
. (2.22)

To guarantee the increase of h(η̂(k)) in the spirit of GEM (Dempster et al.,
1977), a simple way is to perform one-step scoring with a simple step-halving oper-
ation, which can be implemented by updating η̂(k+1) = η̂(k)+(1/2)m−1Ĵ(k)−1

ηη ŝ(k)
η ,

where m is the smallest positive integer k satisfying h(η̂(k+1)) > h(η̂(k)).
For the multivariate t model, the ECME algorithm might be too painfully

slow to be of any practical use. A remedy is to employ a hybrid ECME-scoring
algorithm by running a moderate number of ECME iterations and then switch to
the scoring algorithm. Ideally, this hybrid procedure can enhance the convergence
rate and offer the asymptotic standard errors at convergence.

2.4 Large sample inferences

To make inference on the parameters such as asymptotic standard errors,
confidence regions and hypothesis testing, one usually relies on the approximate
distributions of the ML estimators α̂ = (β̂, θ̂), where θ̂ = (σ̂2, ν̂, ω̂) are estima-
tors of variance components. For model (1.1), the consistency and asymptotic
normality can be established under some mild regularity conditions sketched in
Zacks (1971). Further, I make the following assumptions:

(a) Model (1.1) is correctly specified.

(b) The parameter spaces Θ for α = (β, θ) are compact.

(c) The true values of α = (β, θ), denoted as α0 = (β0, θ0), are all interiors
points of Θ.

(d) The design matrices Xi and Zi in model (1.1) are full rank and all of their
elements are bounded by a single finite real number.

With technical skills described in Miller (1977) and Demidenko and Stukel
(2002, Sec. 5), it can be proved that the ML estimator α̂ = (β̂, θ̂) is consistent



Multivariate t Linear Mixed Models for Longitudinal Data 343

for α0 = (β0, θ0) and is asymptotically normally distributed, say

√
n

[
β̂ − β0

θ̂ − θ0

]
D→ Nd(0,J−1

αα
(
α0)

)
,

where d is the number of distinct parameters in α, the symbol ‘ D→’ stands for
convergence in distribution and Jαα(α0) is the Fisher information matrix Jαα
in (2.3) evaluated at α = α0.

From the block-diagonal form of Jαα (i.e. Jβθ = JT
θβ = 0), it follows that

β̂ and θ̂ are asymptotically independent. Therefore, the asymptotic confidence
regions and hypothesis tests for fixed effects β and variance components θ can be
obtained separately through their approximate Nm1(β, Ĵ−1

ββ
) and Nd−m1(θ, Ĵ−1

θθ
)

distributions. Using the normal approximation, an approximate (1 − α)% confi-
dence region for β is thus provided by{

β ∈ Rm1 | (β − β̂)TĴββ(β − β̂) ≤ χ2
m1

(α)
}

,

where χ2
m1

(α) is the (1 − α) quantile of χ2
m1

.
In practice, the normal approximation could be more accurate when the pa-

rameter space is unrestricted. Hence, it is recommend to use log σ2 in place of σ2,
log(1/ν) in place of ν and logit(πi) in place of πi ∈ [−1, 1] (πi: reparameteriaztion
of φi) for i = 1, . . . , p. One may obtain the confidence intervals of the parameters
by computing their unrestricted scale, then inverting them back to the original
scale.

3. Estimation of Random Effects and Prediction

One usually focuses on estimating the parameters in a marginal model. How-
ever, inference for random effects may sometimes be attractive. Since the random
effects bi’s are unobservable, their estimates can be obtained using the empirical
Bayes technique (Laird and Ware, 1982). Combining distributions in (1.3) and
then integrating with respect to τi, the joint distribution of (Y i, bi) is[

Y i

bi

]
∼ tni+m2

( [
Xiβ
0

]
, σ2

[
Λi ZiΓ

ΓZT
i Γ

]
, ν

)
. (3.1)

Following Laird and Ware (1982), the empirical Bayes estimate of bi can be
obtained by the expectation of the posterior density of bi given Y i with unknown
parameters replaced by their ML estimates.

From (2.9), the empirical Bayes estimate of bi is given by

b̂i = E(bi|Y i, α̂) = Γ̂ZT
i Λ̂

−1
i (Y i − Xiβ̂), (3.2)
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where α̂ = (β̂, σ̂2, Γ̂, φ̂, ν̂) represents the ML estimates of parameters at conver-
gence.

I next consider the prediction of yi, a future q×1 vector of measurements Y i,
given the observed unbalanced repeated measurements Y = (Y T

(i),Y
T
i )T, where

Y (i) = (Y T
1 , . . . , Y T

i−1, Y
T
i+1, . . . , Y

T
N )T. This is called the conditional prediction

by Lee and Geisser (1972). To make this type of prediction, the dependence
structure must be extendable to future values of all observed subjects. The
AR(p) model considered in this paper satisfies this requirement.

Let xi and zi denote q×m1 and q×m2 design matrices of prediction regressors
corresponding to yi. Further, I assume that[

Y i

yi

]
∼ tni+q

([
Xiβ
xiβ

]
, σ2

(
Z∗

i ΓZ∗T

i + C∗
i (φ)

)
, ν

)
, (3.3)

where Z∗
i = (ZT

i , zT
i )T and C∗

i (φ) =
[
ρ|r−s|(φ)

]
for r, s = 1, . . . , ni + q.

Let Ω = Z∗
i ΓZ∗T

i + C∗
i (φ) =

[
Ω11 Ω12

Ω21 Ω22

]
, where Ω11 = Λi is an ni × ni

matrix, Ω21 = ΩT
12 is a q×ni matrix, and Ω22 is a q× q matrix. Here subscript i

of Ω and the partitioned components Ω11, Ω12, Ω21 and Ω22 are suppressed for
notational convenience.

Recalling the property concerning the conditional distribution of the multi-
variate t distribution, it suffices to have

yi | Y i ∼ tq

(
µ2·1,

σ2ν + ∆i

ν + ni
Ω22·1, ν + ni

)
, (3.4)

where µ2·1 = xiβ + Ω21Ω−1
11 (Y i − Xiβ) and Ω22·1 = Ω22 − Ω21Ω−1

11 Ω12. The
estimated minimum mean square error (MSE) predictor of yi is obtained from
the conditional expectation of yi given Y i, i.e.,

ŷi(α) = µ2·1 = xiβ + Ω21Ω−1
11 (Y i − Xiβ). (3.5)

Consequently, the MSE covariance matrix of the predictor (3.5) is determined as

E(ŷi(α) − yi)(ŷi(α) − yi)
T = E

(
cov(yi|Y i)

)
= E

(
σ2ν + ∆i

ν + ni − 2
Ω22·1

)
=

σ2ν

ν − 2
Ω22·1. (3.6)

Typically, the predicted value of yi can be obtained by substituting the ML
estimate α̂ into (3.5). It is noted that expression (3.6) does not account for the
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variation of the estimation of unknown parameters, and hence it will underesti-
mate the true value for small size N . A better approximation of (3.6) may be
employed by the bootstrap approach (Efron and Tibshirani, 1986), whereas it
requires vast amounts of computing power.

4. An Illustrative Example

I applied the results developed in Sections 2 and 3 to the in vivo growth of
lung tumor for 22 xenografted nude mice allocated in the control group. The data
was originally reported by Rygaard and Spang-Thomsen (1997) and subsequently
analyzed by Demidenko (2004, Ch. 10). This longitudinal study is to investigate
the tumor growth rates for the immune-deficient nude mice with human tumor
xenografts implanted after 14 days, defined as the baseline (day 0).
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Figure 1: Tumor growth curves of 22 xenografted nude mice. The darker lines
indicate the mean profile responses and ±1 sample standard deviations across
time. The numbers on the right of curves are subject indices.

Figure 1 depicts the logarithm of tumor growth volumes over an unevenly
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spaced 28-day period for the 22 nude mice assigned to receive the control treat-
ment. The mean level exhibits a linear pattern over time. To diagnose whether
there exist outliers in the data, I employed the discordant outlier detection pro-
cedure of Pan and Fang (2002, Eq. 4.30) and identified that the 12th mouse is a
discordant outlier at the 5% significant level. In other words, the normal linear
mixed model could be inappropriate for this data set.

To analyze this data set, I fit model (1.1) with random effects on both the
intercepts and slopes. The t linear mixed model for the data is specified by

Y i = Xβ + Zbi + εi, bi ∼ t2(0, σ2Γ, ν),
εi ∼ t12

(
0, σ2Ci(φ), ν

)
, bi | τi ⊥ εi | τi, (i = 1, . . . , 22). (4.1)

Here the design matrices are X = [1 k] and Z = X, where 1 = (1, . . . , 1)T is a
12 × 1 unitary vector and k = (0, 1, 2.5, 3.5, 4.5, 6, 7, 8, 10, 11.5, 13, 14)T.
I fit model (4.1) using the entire set of measurements with a white noise (WN)
dependence structure, i.e., φ = 0, and three selected AR(p) dependence struc-
tures for p = 1, 2, 3. Preliminary analysis suggests the correlation of the random
intercepts and the random slopes is very weak. Hence, the Cholesky factor U is
taken as a diagonal matrix and satisfies Γ = U2. The resulting ML estimates
together with the values of the maximized log-likelihood and AICs, are given in
Table 1. As seen in the table, the AR(2) model is the favorite choice since it has
the smallest AIC.

Table 1: ML estimation results for various dependence structures

Parameter WN AR(1) AR(2) AR(3)

mle se mle se mle se mle se

β0 5.1781 0.1219 5.1644 0.1237 5.1429 0.1290 5.1407 0.1296
β1 0.1677 0.0070 0.1685 0.0067 0.1670 0.0068 0.1662 0.0069
σ2 0.0355 0.0054 0.0354 0.0054 0.0407 0.0071 0.0412 0.0077
u11 2.8517 0.4857 2.7352 0.4865 2.5673 0.5583 2.4879 0.7368
u22 0.1542 0.0299 0.1210 0.0336 0.0797 0.0319 0.0786 0.0305
φ1 — —- 0.4333 0.0944 0.4987 0.1165 0.4984 0.1317
φ2 — — — — 0.2614 0.0977 0.2392 0.1011
φ3 — — — — — — 0.0812 0.0937
ν 9.1585 4.4354 9.084 4.3800 8.6018 4.1360 8.6243 4.0508

`(α̂) –30.26 –18.89 –14.11 –13.69

AIC 72.52 51.78 44.22 45.38

AIC=–2(maximized log-likelihood-number of parameters).
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When t models are favorable, the profile log-likelihood function for the degrees
of freedom ν should have a significant drop around the ML estimate ν̂. To
illustrate this, Figure 2 depicts the profile log-likelihood functions of ν for the
four selected dependence structures. It is apparent from Figure 2 that all t
models appear to be more suitable than their normal counterparts for this data
set.
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Figure 2: Profile log-likelihood of ν for the t linear mixed model with selected
(a) WN; (b) AR(1); (c) AR(2); (d) AR(3) dependence structures.

For dependent longitudinal data, a more appropriate measure of ‘fitness’ is
the predictive accuracy of future observations (Rao, 1987; Lee, 1988). I next con-
sider the conditional prediction for the future values, which are usually of prac-
tical interest for dependent data. Following the pseudo cross validation (PCV)
method utilized by Keramidas and Lee (1990), the technique proceeds as follows:
(i) holdout the last q measurements on the ith participant; (ii) compute ML
estimates using the remaining data as the sample; (iii) predict the q true mea-
surements (yi,12−q+1, . . . , yi,12)T, denoted by (ŷi,12−q+1, . . . , ŷi,12)T, using formula
(3.5). The procedure is repeated across subjects i = 1, . . . , 22.
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To compare the performance of different models, I use the mean of square
deviations |ŷij − yij |2, mean of absolute deviations |ŷij − yij | and mean of ab-
solute relative deviations |ŷij − yij |/yij , abbreviated as MSD, MAD and MARD
hereinafter, respectively. To assess the prediction accuracy via PCV, I consider
one-step-ahead and two-step-ahead forecasts for the last measurement of each
mouse. Table 2 compares the prediction accuracy for the t linear mixed model
(4.1) with the normal-based counterpart under the AR(2) structure. The rela-
tive improvement percentage (RIP) listed in Table 2 is defined as the percentage
decrease in the relative prediction accuracy when using t predictors. From the
prediction results summarized in Table 2, it appears that the t model has better
prediction performances.

Table 2: A comparison of predictive accuracy in terms of various discrepancy
measures between the normal and t linear mixed models with AR(2) depen-
dence. The relative improvement percentage (RIP) is measured by (normal-
t)/normal ×100%.

Discrepancy One-step-ahead Two-step-ahead

Measure normal t RIP(%) normal t RIP(%)

MSD 0.0405 0.0384 5.19 0.1242 0.1163 6.36

MAD 0.1702 0.1624 4.58 0.3020 0.2843 5.86

MARD 0.0235 0.0224 4.68 0.0421 0.0396 5.94

It is interesting to compare the prediction accuracies of the t and normal linear
mixed models after some contaminations are introduced into the original data set,
which is a common way of demonstrating the robustness of a model, see, e.g.,
Peel and McLachlan (2000). The procedure is implemented by adding various
constants −10,−8, . . . , 8, 10 to the sixth observation of the first mouse, which is
around the middle point of the data. I use the first eleven measurements of each
mouse as the sample to predict the last measurement. It is readily seen from
Table 3 that the parameters obtained by the normal model are highly affected by
a single outlier, whereas the influence for the t model is limited in a short range.
The last column also shows that the t model can produce substantial gains in
prediction accuracy as the level of perturbation becomes larger. This suggests
the t model provides a favorable way for achieving robust statistical inferences.
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Table 3: Summary of the comparison of parameter estimates and prediction
accuracy when fitting the normal and t linear mixed models using perturbed
samples. The first column shows various perturbation constants.

constant model ML estimates MARD RIP(%)
β1 β2 φ1 φ2 ν

−10 normal 5.059 0.173 0.018 –0.011 — 0.0431 44.8
t 5.173 0.167 0.414 0.295 2.921 0.0238

−8 normal 5.064 0.173 0.045 0.007 — 0.0402 41.3
t 5.172 0.168 0.413 0.294 3.107 0.0236

−6 normal 5.068 0.174 0.096 0.042 — 0.0362 36.4
t 5.171 0.168 0.411 0.293 3.398 0.0235

−4 normal 5.072 0.174 0.147 0.079 — 0.0287 18.8
t 5.168 0.168 0.408 0.290 3.950 0.0233

−2 normal 5.074 0.174 0.257 0.166 — 0.0251 12.6
t 5.160 0.168 0.400 0.283 5.708 0.0232

+2 normal 5.083 0.173 0.303 0.211 — 0.0237 4.64
t 5.162 0.168 0.413 0.295 5.236 0.0226

+4 normal 5.093 0.175 0.203 0.136 — 0.0275 17.8
t 5.168 0.168 0.414 0.295 3.840 0.0226

+6 normal 5.101 0.175 0.130 0.082 — 0.344 34.0
t 5.171 0.167 0.415 0.296 3.346 0.0227

+8 normal 5.108 0.176 0.080 0.045 — 0.0393 42.2
t 5.172 0.167 0.416 0.296 3.076 0.0227

+10 normal 5.114 0.177 0.051 0.024 — 0.0433 47.3
t 5.173 0.167 0.416 0.297 2.899 0.0228

5. Discussion

In this paper, I provide a robust approach to the linear mixed model based
on the multivariate t distribution and utilize the convenient AR(p) dependence
structure to precisely capture the within-subject dependence, which allows prac-
titioners to analyze longitudinal data in a wide variety of considerations. Besides,
the proposed computational technique and prediction method are very easy to
implement. Numerical results illustrated in Section 4 indicates the proposed
model for this data set is evidently more adequate than the conventional normal
linear mixed model in the comparison of model fitting as well as prediction of
future values.

A number of competing approaches to the robust estimation of linear mixed
models have been proposed in the literature, e.g., robust estimating equations of
Huggins (1992, 1993), robust REML of Richardson and Welsh (1995), bounded
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influence estimation of Richardson (1997) and robust Huber’s ρ method of Gill
(2000). It is a worthwhile task to compare the t linear mixed model with alter-
native competing approaches.

Recently, Lin and Lee (2008) have proposed a novel linear mixed model in
which the random effects are assumed to follow a multivariate skew normal dis-
tribution (Azzalini and Dalla Valle, 1996; Azzalini and Capitaino, 1999) as an
alternative to generalization and mentioned an appropriate specification of ran-
dom effects may enhance predictive abilities. A unified approach to modeling
random effects for longitudinal data within the framework of multivariate skew t
distribution (Azzalini and Capitaino, 2003) is in progress and will be reported in
a follow-up paper.

Appendix A. The Score Vector and Information Matrix

The score vector, sα = ∂`(α|Y )/∂α, has the following elements:

sβ =
N∑

i=1

(ν + ni)
XT

i Λ−1
i ei

σ2ν + ∆i
,

sσ2 = − n

2σ2
+

1
2σ2

N∑
i=1

(ν + ni)
(

∆i

σ2ν + ∆i

)
,

sν =
1
2

N∑
i=1

(
DG

(
ν + ni

2

)
− DG

(ν

2

)
− ni

ν
− log

(
1 +

∆i

σ2ν

)
+

(ν + ni)
ν

∆i

σ2ν + ∆i

)
,

[sω ]r = −1
2

N∑
i=1

(
tr(Λ−1

i Λ̇ir) − (ν + ni)
(

eT
i Λ−1

i Λ̇irΛ−1
i ei

σ2ν + ∆i

))
,

where ∆i = ∆i(β,Γ, φ) for r = 1, . . . , g, DG(x) = d log Γ(x)/dx is the digamma
function and

Λ̇ir =
∂Λi(ω)

∂ωr

=
∂

∂ωr

(
ZT

i ΓZi + Ci

)
=


ZT

i

(
∂UT

∂uij
U + UT ∂U

∂uij

)
Zi if ωr = γij ;

∂Ci

∂φk
if ωr = φk,

with

∂U

∂uij
= [ast]m2×m2 and ast = ats =

{
1 if s = i, t = j;
0 otherwise,

user
螢光標示
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and

∂Ci

∂φk
=

∂(C−1
i )−1

∂φk
= −Ci

∂C−1
i

∂φk
Ci,

where ∂C−1
i /∂φk is given in (2.7).

The information matrix, Jαα = E(−∂2`(α|Y )/∂α∂αT), has the following
elements:

Jββ =
N∑

i=1

ν + ni

σ2 (ν + ni + 2)
XT

i Λ−1
i Xi,

Jβσ = 0m1×1, Jβν = 0m1×1, Jβω = 0m1×g,

Jσ2σ2 =
ν

2σ4

N∑
i=1

ni

ν + ni + 2
, Jσ2ν = − 1

σ2

N∑
i=1

ni

(ν + ni)(ν + ni + 2)
,

[Jσ2ω]r =
ν

2σ2

N∑
i=1

1
ν + ni + 2

tr(Λ−1
i Λ̇ir),

Jνν =
1
4

N∑
i=1

(
TG

(ν

2

)
− TG

(
ν + ni

2

)
− 2ni(ν + ni + 4)

ν(ν + ni)(ν + ni + 2)

)
,

[Jνω]r = −
N∑

i=1

1
(ν + ni) (ν + ni + 2)

tr(Λ−1
i Λ̇ir),

[Jωω]rs =
1
2

N∑
i=1

1
ν + ni + 2

(
(ν + ni)tr(Λ−1

i Λ̇irΛ−1
i Λ̇is) − tr(Λ−1

i Λ̇ir)tr(Λ−1
i Λ̇is)

)
,

for r, s = 1, . . . , g, where TG(x) = d2

dx2 log Γ(x) denotes the trigamma function.

Appendix B. Proof of Proposition 3

The conditional density f(τi | Y i) is

f(τi | Y i) ∝ f(Y i, τi)

∝ τ
ν+ni

2
−1

i exp
{
−

(ν + σ−2∆i

2

)
τi

}
.

It follows that the conditional distribution of τi | Y i is Gamma
(ν + ni

2
,
ν + σ−2∆i

2

)
.

Hence, it suffices to show

τ̂i
(k) = E(τi | Y i, α̂

(k)) =
ν̂(k) + ni

ν̂(k) + σ̂−2(k)∆̂(k)
,
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and

κ̂
(k)
i = E(log τi | Y i, α̂

(k)) = DG
( ν̂(k) + ni

2

)
− log

( ν̂(k) + σ̂−2(k)
∆̂(k)

2

)
.

From (2.9) and (2.10), the following results are obtained.

Ψ̂
(k)
1i (β) = E

(
τi(Y i − Xiβ − Zibi)(Y i − Xiβ − Zibi)T | Y i, α̂

(k)
)

= τ̂
(k)
i (Y i − Xiβ)(Y i − Xiβ)T − (Y i − Xiβ)E

(
τi(Zibi)T | Y i, α̂

(k)
)

−E
(
τiZibi | Y i, α̂(k)

)
(Y i − Xiβ)T + ZiE

(
τibib

T
i | Y i, α̂

(k)
)
ZT

i

= τ̂
(k)
i (Y i − Xiβ)(Y i − Xiβ)T − τ̂

(k)
i (Y i − Xiβ)b̂

(k)T

i ZT
i

−τ̂
(k)
i Zib̂

(k)

i (Y i − Xiβ)T + τ̂
(k)
i Zib̂

(k)

i b̂
(k)T

i ZT
i

+σ̂2(k)
Zi

(
ZT

i Ĉ
(k)−1

i Zi + Γ̂
(k)−1)−1

ZT
i

= τ̂
(k)
i (Y i − Xiβ − Zib̂

(k)

i )(Y i − Xiβ − Zib̂
(k)

i )T

+σ̂2(k)
Zi

(
ZT

i Ĉ
(k)−1

i Zi + Γ̂
(k)−1)−1

ZT
i

Ψ̂
(k)
2i = E

(
τibib

T
i | Y i, α̂

(k)
)

= E
(
τiE(bib

T
i | Y i, τi, α̂

(k)) | Y i, α̂
(k)

)
= E

(
τiE(bi | Y i, τi, α̂

(k))E(bT
i | Y i, τi, α̂

(k)) + τicov(bi | Y i, τi, α̂
(k)) | Y i, α̂

(k)
)

= τ̂
(k)
i b̂

(k)

i b̂
(k)T

i + σ̂2(k)(
ZT

i Ĉ
(k)−1

i Zi + Γ̂
(k)−1)−1

.
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