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In this chapter we reviewed. two well known papers on binomial option pricing. They
are the papers by Cox, Ross, and Rubinstein (1979) and Rendleman and Barter (1979).
We have also reviewed the multinomial extension as given in Madan, Milne, and Shefrin
(1989). In this review we will give detailed derivations of the limiting results, some of
which are new and could not be found from the original papers. It will enable the
statistician interested in option pricing models to understand the basic ingredients of
the option pricing models. It will also provide some insights of the mathematical details
for the finance professional. Thus, it is our belief that the chapter is useful for serious
readers in binomial and multinomial option pricings.
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1. Introduction

The main purpose of this chapter is to review two important binomial
option pricing model papers and one multinomial option pricing model
with an emphasis of the limiting properties of the results when the lapsed
time between successive stock price changes tends to zero. This will
enable the statistician interested in option pricing models to understand
some basic ingredients of the option pricing models. It will also facilitate
the understanding of the statistical aspects of the option pricing models
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for the finance professional. Some of the detailed derivations are new
and could not be found from the original papers. Hence, the chapter
is useful for serious readers interested in the binomial option pricing
model and the multinomial option pricing model and their relationship
to the celebrated Black—Scholes model.

2. The Binomial Option Pricing Model of
Cox, Ross, and Rubinstein

In this section we will concentrate on the limiting behavior of the bino-
mial option pricing model proposed by Cox, Ross, and Rubinstein
(CRR, 1979).

2.1. The binomial option pricing formula of CRR

Let S be the current stock price, K be the strike price and R — 1 be the
riskless rate. It is assumed that the stock follows a binomial process,
from one period to the next it can only go up by a factor of « with
probability p or go down by a factor of d with probability 1 — p. After
n periods to maturity, CRR showed that the option price C is:

Q— n! X i, C nek
= — B ————— — n n S — 1
€= L fo—j P L~ P Max(0, Wl - KT ()

k=0

An alternative expression for C, which 1s easier to evaluate, 1s

- n! e u*dr*
cC=S l:Z mpk(l —p) k—R"_:'

k=m
K | ¢ n! o
‘E[Zm”*“ -P }
k=m
, K
= SB(m;n, p') — E;B(m; n, p) (2)

Where p’ = p%, B(m;n, p) = ) ,_, (7} p*(1 — p)"™* and m is the
minimum number of upward stock movements necessary for the option
to terminate in the money, i.e., m is the minimum value of & in (1) such

that u™d" "S- X > 0.
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2.2. Limiting case

We now show that the binomial option pricing formula as given in (2)
will converge to the celebrated Black—Scholes option pricing model.
The Black—Scholes formula is

C=SN()—e KN, — /1) (3)

Where r be the continuous compound interest such that R" = ¢* as
n — oo, and

_ log(S/K) + (r + 0%/t
- "

In order to show the limiting result that the binomial option pricing
formula converges to the continuous version of Black—Scholes option
pricing formula, we suppose that 4 represents the elapsed time between
successive stock price changes. Thus, if ¢ is the fixed length of calendar
time to expiration, and » is the total number of periods each with length
h,then A = t/n. As the trading frequency increases, 4 will get closer to
zero. When /& — 0, this 1s equivalent to n — 00.

Let S* be the stock price at the end of the nth period with the initial
price S. If there are j upward moves during the n periods, then

d, 4

S‘
o8 (3 ) = 10800 + (3 — D1og(@ = jlog (5) +nlog@) ()

Since j is the realization of a binomial random variable with proba-
bility of a success being p, we have expectation of log(S5*/5)

S‘
E (log (—S—)) =n[plog(u/d) + log(d)] = in (6)
And its variance
Var (1og () ) = nliogw/af p1 = p =62 (1)

Since we divide up our original longer time period ¢ into many shorter
subperiods of length & so thatt = nh, our procedure calls for making »
longer, while keeping the length ¢ fixed. In the limiting process we would
want the mean and the variance of the continuously compounded log
rate of return of the assumed stock price movement to coincide with
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that of actual stock price as n — oco. Let the actual values of 4in and
&*n be put and o1, respectively. It can be shown that if we set

I 1 t
u=eV" d=e¢ V7 p= +—E\/; ®

Then

2y > 0% asn— 00

gan — ut and &
Lemma 1 (Lyapounov’s Condition). Suppose X, X,, - - - are indepen-
dent and uniformly bounded with E(X;) = 0,Y, = X; 4+ ...+ X, and
st = E(Y?) = Var(¥,). If

R

hmz s2+5E|Xk|2+5 =0, forsome §>0

k=]

Then

Y,
24 NWO,1), asn— oo

n

Theorem 1. If

pllog(u) — 4 + (1 - p)llog(d) — a)?
é3/n

—-0as n—>o00 (9

Then

Pr <log(S;/j;— fn < z) — N(2) (10)
where N(z) denotes the cumulative standard normal distribution function.
Proof. Since
pllog() — i = pllog(u) — plog(u/d) ~ log(d)|?
= p(1 ~ p)’|log(u/d)’
And
(1 = p)llog(d) — i)’ = (1 - p)|log(d) — plog(u/d) ~log(d)’
= p*(1 = p)tlog(u/d)P’
We have
pllog()—AP+(1—p)llog(d)—4l’ = p(1—p)[(1—p)*+plllog(u/d) |’
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Thus,
pllog(u) — > + (1 — p)|log(d) — 4
5 Jn
_ pU =)L = p)* + plflog(u/d)
[v/p(I = p)log(u/d)PP/n

_d=pt+p

Vnp(I'="p)

-0 asn— o0

It is noted that the condition (9) is a special case of the Lyapounov’s
condition in Lemma 1 when § = 1. Hence, (10) is established by
Lemma 1.

We will next show that the binomial option pricing model as given in
(2) will indeed coincide with the Black-Scholes option pricing formula
as given in (3). In order to show the limiting result, we need to show
that as n — oo, '

B(m;n, p’) > N(d,) and B(m:n, p) > N(d, — o/t

We will only show the second convergence results, as the same argu-
ment will hold true for the first convergence. From the definition of
B(m; n, p), it is clear that

1-Bm;n,p)=Pr(j<m-—-1)

j—np m—l—-np)
=P 11
r(dnp(l — = vazp) WY

From (5) and the definitions for i and 62, we have

j—np __log(s"/S) = in 2
Nnp—p) EN

Also, from the binomial option pricing formula we have

_ log(gm)
~ log(k/d)

Where ¢ is a real number between 0 and 1.
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It is easy to show that

m—1—np log(K/S) — jin —elog(u/d)

Vnp(I=p) &/n

In order to apply the central limit theorem, we have to evaluate the
asymptotic results of in, 621 and log(u/d). It is clear that

gn— (r —o'/Dt, &*n— o?, and log(u/d) - 0

Hence

log(K/S) — oin — elog(u/d) e log(K/S) — (r — 0%/ 2)t

&/n o/t

Using the fact that 1 — N(z) = N(—z), we have
B(m;n, p) = N(—z) = N(d, — o/1)

Where d, is given in (4). :

Similar argument holds for B(m; n, p’), and hence we completed the
proof that the binomial option pricing formula as given in (2) includes
the Block-Scholes option pricing formula as a limiting case.

3. The Binomial Option Pricing of
Rendleman and Bartter

In this section we will present an alternative binomial option model pro-
posed by Rendleman and Barter (RB, 1979), which was independently
developed and published in the same year as CRR (1979).

3.1. The binomial option pricing formuifa of RB

Similar to option pricing formuia in Eq. (2) for the binomial option
pricing model of CRR, we have the following binomial option C with
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n periods,

o (M\[R-HHYHV[(H* - RH T

C_SZ;(I')[W—H-)R] [<H+—H-)R]
K ~(M\[R-H [ H-RT”
R"i=m<i> H+ — H- H+—H~]

= SB(m;n, p') — %B(m; n, p) (13)

Where H* and H ™ represent the returns per dollar invested in the stock
if the price rises, called the “+” state, and falls, called the “—” state,
respectively, and

m = 14 INT [log(K/S) —n -log(H‘):l
log(H+) —log(H™)
_ R-H"
P=H+_H-

14

(R—H)H* H*
= —————— = p— 14

H—HHR TR (19
Here R — 1 in (13) denotes the riskless interest rate over one period, as
in CRR. '

3.2. The limiting case

Before establishing the convergence of the binomial option pricing for-
mula to the Black-Scholes option pricing formula, we first consider the
first two moments of ¥ = log(§*/S) = 3 ;_, X;, where

¥ = h* =log(H*) with probability 6
"7 |h~ =log(H~) with probability 1—86

It is noted that random variable Y is the sum of the log-returns over
the n periods in which the probability of a price rise is § and a price
fallis 1 — 6. Also, the movements of the price changes are independent.



278 Jack C. Lee et al.

Then,

uy = Elog(5*/5) = E (Z x,) = nl(h* = h7)6 +h7]

i=1

o? = Var(log(S*/5)) = Var (Z X,-) =n(h* — k)20 - 6)

i=l]

For the formulae for p, and o2, we have

By it —hyo +hm
2
o
Ty =t —h)1 -9
Implying that
/J'\' 1 -
h+ b
\/_
b = Hy Gy 6’
n o Jn
Since h* = log(H™*) and b~ = log(H ™), we obtain
1-6
HY =exp{ 2 + L,/ ——
B

9
H = — - —=
exp { - f }
The formulae for H* and H~ are useful in deriving the asymptotic

binomial option pricing formula as n — oo. From (2), the call option
price can be stated as

K
C = SB(m;n, p') - FB(M; n, p).

It is well known that the binomial distribution converges to the nor-
mal distribution asn — oo. Thus, the binomial option price C becomes

C=S[N(Z))-N(Z)] —Ke "[N(Z)) —N(Z;)], as n—> 0
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Where
7 m—np' , n—np'
| = = ===
Jnp'(1 = p") T = p)

m —np ., n—np

T 7= T2
Jip(T=p) 72 Jnp(I=p)

Zz=

279

It is trivial to see that as n — o0, Z| and Z; will both tend to oo.

We will next consider lim,_,,, Z, and lim,_, o Z,. Substituting H* =
ey mt oy IVRWT=B)8 | [y = — guy/n~(oy/VRVBIT=0} and m into Z, and Z, will

lead to
, 1+INT[‘°g(K/S);%UOv~_/g)«/F/_<I:5] -
| N T
o 10g(K/S) - p, SR — p)
o,/ P =pHY/8(T=6) /p(=p)
And
log(K/S)—pny NN TR
Z, = i INT[ ) oqu:;u—o) ] —hp
o T —p)
lOg(K/S) — Uy ﬁ(@ _ P)

T o /P =-pea-0  JpU-p)
We will obtain
, _(R—H)H*
P =RE*=H)
_ (I1=R'H)H*
~ (H*—-H")
_ (1 _ e—n/nH—)H+
- H+ — H-

asn — oo

]

Hence, for large n,

(1 — oTmtuyin—(y Vi1 ) N WA
14

p =
e ity 1T _ pusin=toy1 /15

(15)

(16)
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Let o(1/n*) denote a function tending to zero more rapidly than 1/n? for
all a > 0. By the Taylor’s expansion,

Ht = e#)’/"‘*'("y/s/’?)\/ l—E_

2
My oy, [1-86 1 fpuy oy [1-6
+(n+ﬁ 7 )+zz PR

And

Hence, the denominator of p’ is

H" —H™

(S ) (5 ) )
-5 (5 ) () ()

(19)
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Meanwhile, the numerator of p’ is
(1-e"H)H*
— (1 - e—r:/n+u,/n-<a,/ﬁ)¢?—§) gty Inay 1N/ GE
R INOWAC e-r'/"+2u.v/"+<°y/m(\/¥-\/?ﬁ—)
- H* — e—rl/n+2#y/n+(f’y/ﬁ)(\/§‘\/?é;) (20)

Where H™ is given 1n (17).
Furthermore,

e—rr/n+2#,/n+(a,,/ﬁ)(,/_H_LF ‘«/—’_ﬁy)

_ re 2uy oy \/1—9 \/é) \
—1+[ n+n + n(‘ 2] 1-6
1 [ 2 1—6 7\
Ly 2u &\ﬁ;_%__
+2! 7 h +ﬁ( 6 1—9)}
e ([T
3| T ﬁ 9 1-6

_ rt 2uy o, \F—@_\/ 6
= T a Tt T AW TS 1_06
o2 ( [1=8 7\’ 1
'y - —
+§Z(\/ ; _\/1—9) +O(n> (21)

Thus, the numerator of p’ s

(1 _ e—rl/nH—)H+
I N W AE __e—”/’l+2#y/’l+(<7y/~/i)(«/—g‘[- Ly

o [, 1(, 1,/ 6 )+02)+0(1)
= —=_ ) — 4 - -y — =0 ——— -
VI TR\ TN\T )T "
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We obtain
, 1 rt-—pc_v—%ayz(—o—)+a

p UZ —_
Vo, (15 + 50 + 15 (52— 155) + 0 (1)

e Crew = remnatd OBl

It can be shown that
/ )
. , -6y "o
lim p’' =

ﬁf(ﬁ‘—z—“—sﬂ

=0

1+T

Similar to the limiting result for the binomial option model of CRR,
we assume that 1, — ur and o7 — o?t,asn — oo. Then

lim /7 (6 - p)

=—1imﬁ(p’—9)
n—o0
_ (rt —uy =302 (%) + 97) J 5°
= — lim -
oy (i +/558) + 22 (52— 1) + o ()

_ﬁg
TN AT R )
(- %azt(,—g) +ot) [i52

~ Jim faff Voo (i +/'5) - e (5
T o () i () o ()

£

o’

)
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NCIET)) 1 1, (1-20
z‘“_(——)(”‘“’__azt(lee))J”“ 502t<1 9))

o/t 2
e —9) 1,
_———a:/_-t—— (rt—p,t+§0 t) (24)
From (15),

lim Z; = lim

n=>c0 n—oco

( log(K/S) — ny N ﬁ(O—p’))
o,/ p(T=p)/6(T-8)  /p'(1-p)
_ log(K/S)—ut rt—put+iok
B ot o1
log(K/S) — (r + %az)t
= i
With the same manipulation on p’, we have
R—-H- e —H-
P=H+_H- T H*_H-
By the Taylor’s series expansion, the numerator of p is

-1 1 6
e”/"—H =;(rt—u‘—‘2‘0'y2<1— )—*—o’y\/—

which is equal to —1o? plus the numerator of p’. So that,
1 rt =y =397 (%)

S Y =y P AT S YT

-8

+ +o(1/n)
1%tV Tt ar (5 1) +o ()

(25)

i) ()

Hence, arguments similar to p’, we have

limp=260

And

lim /n(6 — p) = _M (rt — ut ~ lcrzt)
n—»00 O'-\/; 2
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Hence, from (16) we have

log(K/S) —pt rt—pt—1ic% _ log(K/S) ~ (r— 3091

Iim Z, = -
rmoo ot ot ot
Recognizing that | — N(Z) = N(—Z) and letting
dl - — llIﬂ Z]
n—»o0
dz = — llm 22
n=>00

We have the continuous time version of the two-state model
C= SN(d|) - Ke—”N(dz) (26)
Where

g = log(S/K) + (r + So?)1
1= oi

dz:dl—(f\/l_

The option pricing formula C as given in Eq. (26) is exactly that of
Black and Scholes for the fixed length ¢ of calendar time to expiration.

We close this section by noting that the advantage of the limiting
result for the binomial option model of Rendleman and Barter (1979)
1s that no assumptions are made regarding H* and H~. While in the
CRR model, the corresponding parameters u, d and p are given in (8).
Hence, in a way, CRR is more restricted than RB in their treatments of
the convergence to the Black-Scholes formula. The only requirement
in the RB paper is the understanding of the Taylor series expansion,
although the convergence result in the original RB paper is not easy to
follow. Thus, for a reader interested in the limiting result of the binomial
option pricing model, RB seems to be a more intuitive paper and easier
to comprehend without invoking advanced probability theory.

4. Multinomial Option Pricing Model

Instead of two possible movements for the stock price, as considered by
CRR (1979) and RB (1979), it is natural to extend it to the situation in
which there are k + | possible price movements. In this section we will
present the extension proposed by Madan, Milne, and Shefrin (1989).
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More details than the original paper are provided and should be helpful
to the readers. We will derive the multinomial option pricing model in
Sec. 4.1 and the Black and Scholes model as a limiting case in Sec. 4.2.

4.1. Derivation of the option pricing model

Suppose that the stock price follows a multiplicative multinomial pro-
cess over discrete periods. The rate of return on the stock over each
period can have (k 4 1) possible values: f; — 1 with probability ¢; for
i =1i,...,(k+1). Thus,if the current stock price is S, the stock price at
the end of the period will be one of f; S. We can represent this movement
with the following diagram:

fiS  with probability ¢,
28 with probability ¢,

S —
fis1S  with probability g4
Let X = (X),....Xi,p)and g = (q), ... qu1). 0 < q; < | for

j =1,....,k+ 1. X is said to have the multinomial distribution, or
X ~ Mult(n, g), if the probability density is

k+1

f@ = ﬂq

Forall 0 < x; < n,where }./%\x; =nand /%) q; = 1.

Theorem 2. The current value of the n-period multinomial option price C
is given by

k+1

k+1 X
5UY kg TTa
= e () - ke Tla] e

j=1

Where A = {x | §* > K} = {xf ]'["“fJ’S>K}
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Proof.

C = R7"E[max(§* — K, 0)]

K+l
!
=R E O — - K ll

[:Mxllxz' xk+l ) q}

k+1 k1
e (Sﬂf M1
k41 k+1
© [lelxz (Sn(fJQJ)JﬁKHqJ>}

xeA
K+l fa; E+l
— S J1J _ KR—n "_'
[le'xz X! ( l_[( ) Hq’)]
xeA ji=1
Now, let v = (v, ..., vyy) T with v; = (f;4,;)/R. If investors are risk-

neutral, that is

k+1

D (fi8)q; = RS

j=1

Implying that

i fidi _ 1
R
J=1

Hence, v and ¢ are both the probability vectors in multinomial distri-
bution, So (27) can be rewritten as

C = SP,(A,) ~ KR™"P,(A,)

Where
| k1
n! X
P"(A"):vaxr Xoo1! Vi
e X1 S i
And
! k+1
P(A,) z ‘/
g\e) = Z H j
xl!xz' xk+l!
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It is noted that whenk = 1,9, = p,q = 1 — p, fy = u and f, = d,
then Eq. (27) is exactly the binomial option pricing formula of CRR
as given in Eq. (1). Thus, Theorem 2 is a direct extension of the option
pricing formula of CRR.

4.2, The limiting case

Denote n7 = (01, ..., mes1) = (og(f1), ..., 108(fer1)), Where n; = h¢;
and

k41
t
h = \/;o' +o(l/vn), D g8l =1
j=1
Then

g k1
log (?) = ij log(f;) =7n"x

j=1

Let n7(nq) = ny'q = ut, then n'q = pt/n, and [Zﬁ:: q,—nf]n =

2 ¢kl 2 2 pl?
nh*} 148 = ot + A

Since
Tg=htTg=pus. h=0 1)
ng= Q—Nnv - ,\/ﬁ

We have £Tq = O(1//n).

For any vector y and for notational convenience, let y denote the
truncated vector obtain from y by deleting its last entry. That is, y =
V1 Yar oo Yot ¥ T = (37, )T, where = (1, y2, -+ .0 ypot) T

Bhattacharya and Rao (1976) showed that if X ~ Mult(n, q), then
for large n, X ~ Ni(nq, nX), where X, = A(q) — c}(}T, and ¢ is a
diagonal matrix such that

_ )4 ifi=j

A(‘i) = [bij]» bij 0 if i ;& ]

‘We next observe that

Xea, iff fUf-f3'S>K
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Equivalently,
k+1 %
XeAd, iff Zlog(fj)xj =7 X 4 Ny Xagy > log (3)
j=1
or -
AT TA AT A
nX-nyyq 1og(S/K) + i1 %41 + 17 ¢
L > Y
[nn Eqn] [nn Eqn]
Where Z* is a standard normal random variable and right-hand side is
also a random variable since it is a function of x; ;.
Next, consider (§ — nx411:) (X — ng) in order to obtain the limiting
result, where 1, is a vector of unit entries and k is its dimension.
Since

Xea, iff z°=

(= 1) (X — ng)

AT & AT A Ly -

=7 X—nij §—nal; X + 1§

=7 X —ni § = s (0 = xep) + 10 (1= Ges)
AT & AT A

= X —nil' § + i1 Xen = A1 G

We have
B X = — marl)T (X — nd) + n0e1Gar — MeriXas
Hence
Xea, iff §X-ni'g>—10g(S/K) ~ misixers — nih' §
Or equivalently,
iff (=m0 (X —ng) > —log(S/K) —nn'q
Thus,
Pa(Ag) = Pr ((F = mar 10T (X — ng) > ~log(S/K) —nn'q)
Consequently,
(= men 1T (X = nd) S NO, n( = nesn L) Z5G — men 1))
Lemma 2. (@) [f £, = A(q) — qq " then
(1~ '7k+11k)T2:,(ﬁ — et L) = (g — 7)k+llk+l)Tzq(n ~ M1 L)
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(b) If £, = A(v) —~ vy then
(= e 1) TELA = Mo 1) = 7 = Mesr Les ) T2 @ = nest Lert)

Proof. See the Appendix.

If
, log(S/K) +ny"g
¢ [n(n — meqs 1k+1)TEq(77 = N1 e 1)]'2
Then
(G ~ net 10T (X = nd)
P, (A,)) =Pr > —Z
e ([n(ﬂ = N1 L) TEg () — Mg L )]172 !

~ 1 - N(=2,) = N(Z,)
Similarly, if
_ log(S/K) +nn"y
" [ = et L) TEV (0 — et Lig D12
Then P,(A,) = N(Z,).

Theorem 3. Suppose that R fTq = (1+r)/" fTq = 1,n; = log(f}) =
he;, h = Jino + o(1//n) for all jand 311 q;62 = 1.
Then
! az
@n'qg=1; (IOg(l +r) - 7) +o(1)

B)nv="= (log(l +r)+ 223) + 0(%)
(¢) im, oo (1) = M1 L) 25 (1 = Mesr L)
= Moo (= Mirt L) T Zg (0 — Mgt L) = 0
(d) limn—boo"'(ﬁ - nk+llk)Tz:(ﬁ - nk+11k) = 0,2t
Proof. See the Appendix.
Using the results in Theorem 3, let

log(S/K) + (r + o%/2)1

dy = lim Z,,=
l\__ n—oo O'\/;
1 K —o?
b= lim z, = BORV T oD, s
n—=o0 0’»\/?

then C — SN(d,) — Ke™"' N(dy),which is the Black-Scholes formula.
Here we use the result R~ tends to e™"' as n — 00, as seen in Sec. 2.2
and the fact that P,(A,) - N(d|) and P,(A;) = N(d).
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Appendix
Proof of Lemma 2.
(a) Since
X, =A(g) —qq’ =A< 7 )— < 7 )(éT,qm)
Gi+) Gr+)
_ (A(é) 0 ) (4 and
07 G+ Gi+1q qiﬂ
_ Z; _Qk+lé
= T .
—qk+1q Grk+1 — Giyy
And
1= ()
Nk+1
We have

= M1 Lis ) T2, (0 = Mt L)

. ¥ A s
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(b) The proof is similar to that of (a).

Proof of Theorem 3.
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Making use of the fact that
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Multiplying both sides by +/n, we obtain
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(b) Since
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Implying that
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Then
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Thus,
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(d) The proof is analogous to that of (c) and hence is omitted.
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