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Abstract Introduction
Censored data arise frequently in diverse applications in which observations to be measured may be An extension of the MFAC approach (Wang et al. 2019) is introduced by including regression covariates.
subject to some upper and lower detection limits due to the restriction of experimental apparatus such The proposed model clearly encompasses the MFAC approach with advantages including the flexibility in

that they are not exactly quantifiable. Mixtures of factor analyzers with censored data (MFAC) have been  situations involving related independent variables within g classes. A description of finding ML estimates
recently proposed for model-based density estimation and clustering of high-dimensional data under the of model parameters through two EM-based algorithms in which the E-step relies on calculating the first-

presence of censored observations. In this paper, we consider an extended version of MFAC with two moments of the truncated multivariate-normal distribution (Lin, 2009) is provided. The computational
covariates to accommodate multiply censored dependent variables and develop two analytically feasible  procedures we developed are rather stable and efficient for estimating the proposed model. In addition,
EM-type algorithm for computing maximum likelihood estimates of the parameters with closed-form we offer an approximation of the empirical Hessian matrix via the Louis' method (Louis, 1982), so that the
expressions. Moreover, we provide an information-based method to compute asymptotic standard errors standard errors of mixture regression coefficients and mixing proportions can be obtained. The utility of
of mixing proportions and regression coefficients. The utility and performance of the proposed our methodology is illustrated through the analysis of two real-life datasets related to educational
methodology is illustrated through two real data examples. assessment and water quality.
Model Formulation Real Examples
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