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ML Estimation

 Censoring information

Define 𝒗𝑗 = 𝑣𝑗1, … , 𝑣𝑗𝑝
⊤

as the vector of uncensored reading or censoring level, and

𝒄𝑗 = 𝑐𝑗1, … , 𝑐𝑗𝑝
⊤

be the vector of censoring indicators. We shall focus the case of left  censoring:

Incorporating the censoring information into the model, we have the distribution,
, where                            denotes a p-variate truncated normal 

distribution restricted within a right-truncated hyperplane , where 
and 

Therefore, the MFAC admits a two-level hierarchical representation:

where

and

 Given the hierarchical structures, we have the following conditional distributions

,

 The AECM algorithm
Partition the unknown parameters into two 
subjects: and

 The 1st cycle:

• E-step:

 The 2nd cycle:

• E-step:

Conclusion & Future Work

 MFA with linear regression model

and are mutually independent for all 𝑖 and 𝑗.

with probability 𝜋𝑖 (for 𝑖=1,…,𝑔).

, where

 EGRA data
We analyze the dataset presented by Costa et al. 
(2014) for 502 Peruvian students in 2007, who 
were taken by four of ten EGRA tasks, the four 
tasks in the dataset are: 
(i) recognizing letters of the alphabet,
(ii) recognizing simple words,
(iii) simple decoding meaningless words, and
(iv) reading of a passage.
The design matrix 𝑿𝑗of dimension 4×4 for each 

student j corresponds to fixed effects vector

The covariates in 𝑿𝑗 related to 𝜷𝑖 include gender

(0=F, 1=M), grade (0=2nd, 1=3rd), residence 
zone (0 = Rural, 1 = Urban) and the adjusted 
age by subtracting the mean of students’ ages.

 Water resources data
Our 2nd example concerns the water resources  
data (Hoffman and Johnson, 2015) that collected 
the trace metal concentration levels of certain 
dissolved trace metals in the freshwater. There  
are 𝑝=5 (trace metals) concentration levels from 
𝑛=184 independent randomly selected sites in 
freshwater streams across Virginia.

𝜷𝑖 = 𝛽𝑖1, … , 𝛽𝑖4 , for 𝑖 = 1,… , 𝑔.

 Censoring rate: 
The first 10% of lowest total scores.

Scatter plots 
of fitting two-
component, 
three-
component 
models and 
the main 
diagonal is 
histograms. 
( △ group 1,

+ group 2,
× group 3 ).

Introduction
An extension of the MFAC approach (Wang et al. 2019) is introduced by including regression covariates.
The proposed model clearly encompasses the MFAC approach with advantages including the flexibility in 
situations involving related independent variables within g classes. A description of finding ML estimates 
of model parameters through two EM-based algorithms in which the E-step relies on calculating the first-
two moments of the truncated multivariate-normal distribution (Lin, 2009) is provided. The computational 
procedures we developed are rather stable and efficient for estimating the proposed model. In addition, 
we offer an approximation of the empirical Hessian matrix via the Louis' method (Louis, 1982), so that the 
standard errors  of mixture regression coefficients and mixing proportions can be obtained. The utility of 
our methodology is illustrated through the analysis of two real-life datasets related to educational 
assessment and water quality.

Abstract
Censored data arise frequently in diverse applications in which observations to be measured may be 
subject to some upper and lower detection limits due to the restriction of experimental apparatus such 
that they are not exactly quantifiable. Mixtures of factor analyzers with censored data (MFAC) have been 
recently proposed for model-based density estimation and clustering of high-dimensional data under the 
presence of censored observations. In this paper, we consider an extended version of MFAC with 
covariates to accommodate multiply censored dependent variables and develop two analytically feasible 
EM-type algorithm for computing maximum likelihood estimates of the parameters with closed-form 
expressions. Moreover, we provide an information-based method to compute asymptotic standard errors 
of mixing proportions and regression coefficients. The utility and performance of the proposed 
methodology is illustrated through two real data examples.

Model Formulation

• The regression coefficients suggest that third-
grade girls from urban zone in general have 
significantly better performance in speaking 
fluent Spanish than the other students.

• The two model selection criteria show that the 
data can be better described by fitting models 
with more than one component.

• The CPU time of EM and AECM algorithms are 
(1.8 min, 36 min) and (1.5 min, 35 min).

• All plots indicate the EM algorithm is worse than 
AECM in terms of the log-likelihood values and 
required iterations.

• The CPU time for the AECM algorithm is 
substantially less than those spent by EM, 
showing a dramatic advantage of using AECM for 
acceleration.

 We propose two feasible EM-type algorithms without resorting to direct evaluation of the intractable 
observed likelihood function for estimating the MFAC model with covariates.

 Numerical results suggest the AECM algorithm with less amount of missing information has typically 
better convergence behavior than EM. 

 Future research would be interested in extending the current approach to a more flexible framework 
that can accommodate missing values and censored responses occurring simultaneously (Lin et al. 
2018).

• CM-step: Update            by maximizing

𝑄[1] function, yielding

• CM-step: Update           by maximizing

𝑄[2] function, yielding

 The EM algorithm

Let 𝚯 = (𝝅𝒊, 𝜷𝑖 , 𝑩𝑖 , 𝑫𝑖 𝑖=1
𝑔

) be the entire 

unknown parameters in the model.

 E-step:

 M-step: Find             by maximizing Q-function,
yielding

where

 The score vector and Hessian matrix
Let                           , where                          represent the unknown parameters in the 𝑖th component.  
The individual score vector and Hessian matrix are defined as

and                                                                                , where

,                          ,                                                    , 

. Furthermore, it can be verified that                            ,                                ,

and

 Louis’s formula(Louis, 1982): The Fisher information matrix of  can be approximated by

Estimation of standard errors

Real Examples
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• The figure shows the sequential points of five 
trace metals together with their detection limits 
and censoring proportions. 

• In this example, we are interested in comparing 
the convergence behavior of the EM and AECM 
algorithms for fitting the proposed model.


